
Chapter 1

Introduction

In the quest to advance autonomous driving technologies, the creation of sophisticated

machine learning models is imperative. These models are the linchpins of an autonomous

vehicle’s perception system, enabling them to interpret and navigate through the mul-

tifaceted environments they encounters. An essential aspect of training these models is

the inclusion of diverse scenarios that vehicles may face on the road, with a particular

emphasis on critical and dynamic situations involving emergency vehicles. The presence

of emergency vehicles is a common yet complex event that requires an immediate and ap-

propriate response from autonomous systems, posing a significant challenge in the realm

of autonomous vehicle training. The traffic scene analyzed by a YOLO-NAS (You Only

Figure 1.1: YOLO-NAS Object Detection Model

Look Once) object detection model reveals a common problem: the misclassification of

emergency vehicles, in this case, a fire truck mistakenly labeled as a bus. YOLO is 
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known for its speed and accuracy in real-time object detection. It divides an image into 

a grid and makes predictions on multiple objects within the grid, enabling simultaneous 

detection of different o bjects. YOLO-NAS i s a  more r ecent advancement t hat incorpo-

rates Neural Architecture Search (NAS), which automates the design of neural network 

architectures to optimize various parameters.

This research project aims to improve the accuracy of models in recognizing emergency 

vehicles, addressing a challenge that’s often caused by inadequate training data. By 

enriching datasets with a broader range of emergency vehicle images, the project seeks 

to enhance the precision of object detection systems for critical real-world applications.

Recognizing that publicly available datasets lack crucial instances of emergency sce-

narios, this thesis proposes a two-pronged strategy to improve the data landscape for 

autonomous driving systems. The research is based on real-world data sourced from the 

extensive repository of 911 emergency call reports from Orange County. For context, in 

the United States, ”911” is the emergency telephone number that people call for imme-

diate assistance in situations like accidents, fires, or medical e mergencies. These reports 

offer a  r ich array of emergency s ituations and contain a  range of descriptive details that 

highlight the urgency and complexity of real-life events.

The first p hase o f t his s tudy f ocuses o n t ext s cene g eneration, w here t he textual 

content of 911 calls is converted into structured scene descriptions. This task involves ex-

tracting narrative elements and reshaping them into a format that generative models can 

understand. By capturing the subtle nuances from these reports, the research generates 

a set of textual scenes representing various emergency situations with differing l evels of 

complexity and detail.

Building on this text-based foundation, the research moves to the second phase: image 

scene generation. Here, the descriptive text scenes are used to create synthetic images 

that depict the emergency scenarios. This step is crucial because it translates the unpre-

dictable and varied nature of real-world emergencies into visual data that can be used to 

train and evaluate autonomous driving systems. The synthetic images aim to capture a 

range of lighting, weather, and environmental conditions, as well as the positioning and
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signaling of emergency vehicles as described in the 911 call narratives.

The generated images are not just visual representations; they are infused with con-

textual richness from the original 911 call reports, designed to challenge and improve

the perception algorithms of autonomous vehicles. The fidelity of these images to real-

world scenarios is critical, as is the variety of scenes they represent. To achieve this,

the research employs advanced techniques in deep learning, computer vision, and com-

putational graphics, ensuring that the synthesized data is realistic and varied enough to

significantly boost the performance of object detection and classification algorithms.

Moreover, the thesis addresses the complexities of data synthesis, examining the

ethical implications and methodological challenges associated with creating and using

synthetic data. It maintains a high standard of quality to prevent the introduction of

unintended biases or artifacts that could affect the performance of autonomous systems.

In summary, this thesis contributes to the field of autonomous driving by introducing

a unique data augmentation approach that leverages real-world emergency scenarios.

Through meticulous synthesis of text and image data, it enriches existing datasets with

a range of challenging emergency vehicle situations. This ultimately equips autonomous

driving models with the diverse experiences needed to navigate safely and effectively in

an unpredictable world.

1.1 Contributions

The following items summarize the research’s main contribution. Each one of these

contributions will be elaborated on in depth in subsequent chapters.

• Real-World Data Utilization: Our research begins with the innovative approach

of harnessing real-world data derived from 911 emergency call reports in Orange

County. This foundational dataset provides a rich tapestry of emergency scenarios,

each brimming with the urgency and complexity characteristic of real-life situations.

By integrating these detailed narratives into our dataset, we ensure that the training

material for autonomous driving systems reflects the true diversity and dynamism
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Figure 1.2: General Structure of Thesis

of on-road emergency encounters.

• Textual Scene Generation: We introduce a methodical process for transforming the

narrative content of 911 emergency calls into structured, detailed scene descriptions.

This crucial step involves meticulously extracting narrative elements and translating

them into a format that is both comprehensible and actionable for diffusion models.

The resulting textual scenes represent a broad spectrum of emergency situations,

providing a diverse base for further synthetic data generation.

• Synthetic Image Generation: Building on the textual descriptions, we advance to

generating synthetic images that visually depict the emergency scenarios outlined

in the text. This stage is pivotal in translating the descriptive narratives into visual

data, enriching the training and evaluation pools for autonomous vehicle percep-

tion systems with images that reflect the unpredictability of real-world emergencies

under varying conditions.

These contributions make AD training more realistic and effective, helping sys-

tems handle real-world emergencies better. Furthermore, by using real-world data
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and innovative techniques, this research directly improves how accurately AV can

understand and respond to emergencies, making transportation safer and smoother

1.2 Structure of the Thesis

Chapter 1: Introduction - This chapter sets the stage for the research, establishing the

thesis’s central question, objectives, and the significance of generating synthetic image

data for emergency cases.

Chapter 2: Literature Review - A thorough analysis of existing research is presented,

focusing on synthetic image generation and machine learning as they relate to virtual

scenes, highlighting the current gaps the thesis aims to address.

Chapter 3: Pipeline - Details the methodology and workflow used for data collection,

processing, and analysis of real-world data.

Chapter 4: Reverse Engineering - Discusses the process of deconstructing existing

models to understand their functioning and identify opportunities for refinement and

innovation within the context of the research.

Chapter 5: Language Models - Explores the use of large language models for gen-

erating textual descriptions, which are essential for creating accurate and contextually

relevant synthetic images.

Chapter 6: Image Generation and Results - Describes the image generation process,

specifically using diffusion models, and presents the results, along with a discussion on

the effectiveness and potential uses of the synthetic images generated.

Chapter 7: Conclusion - Summarizes the findings of the research, reflects on the

implications and contributions of the study, and proposes directions for future research.
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Chapter 2

Literature Review

The domain of transportation is undergoing a transformative change, with Autonomous

Driving (AD) at the vanguard of this revolution. As technology continues its relentless

march forward, AD ushers in an era where the twin ideals of transportation safety and

efficiency are closer to realization than ever before (Feng et al., 2023). However, every

revolution has its challenges, and in the realm of AD, ensuring the consistent safety and

reliability of algorithm-driven vehicles across varied traffic scenarios stands out (Feng et

al., 2023).

With the burgeoning role of AD in modern transport, the value of simulation environ-

ments has skyrocketed. These aren’t just digital recreations but pivotal testbeds where

AD systems are rigorously evaluated, mimicking real-world demands (Manivasagam et

al., 2020).

Yet, a deep dive into the simulation realm reveals some constraints: established sim-

ulators, including CARLA (A. Dosovitskiy & Koltun, 2017) and SMARTS (Ming & Jun,

2020), primarily rely on predefined, hand-crafted rules for their traffic scenarios (Feng et

al., 2023). This approach, while valuable, might not capture the intricate complexities

of real-world traffic dynamics fully. This could include unpredictable human behaviors,

varying road conditions, and a wide range of environmental factors.

This discrepancy emphasizes the need for more evolved simulations, ones that can

authentically mirror real-world traffic nuances. Enhancing simulation fidelity is essen-
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tial to thoroughly evaluate the Artificial Intelligence-driven (AI-driven) decision-making

prowess of AD systems in diverse scenarios (Feng et al., 2023).

Pushing the envelope further, crafting high-fidelity traffic simulations becomes a linch-

pin in the journey towards perfecting self-driving capabilities (Tan et al., 2021). These

simulations act as incubators for self-driving vehicles (SDVs), refining their functions

and assuring their top-tier performance (Tan et al., 2021). However, achieving true-to-

life virtual replications is not without hurdles. Contemporary AD projects often draw

from real-world recorded scenarios (Manivasagam et al., 2020) or depend on engineering

expertise to manually craft fresh scenarios (A. Dosovitskiy & Koltun, 2017), (Lopez et

al., 2018). While these approaches offer a semblance of realism, they inherently raise

scalability issues (Tan et al., 2021). Such challenges have fueled the pursuit of automa-

tion in traffic scenario generation, emphasizing granular details from actor dynamics to

their in-scene interactions (Tan et al., 2021).

Zooming out, simulations play an undeniable role in shaping the future of autonomous

vehicles (E. Pronovost & Roy, 2023). Cutting-edge advancements in graphics and real-

istic physics within simulators have enriched the development and validation processes

of AD models (E. Pronovost & Roy, 2023). Yet, a formidable challenge looms: aligning

simulated realities seamlessly with real-world intricacies. Whether it’s ensuring accu-

rate vehicle orientations or emulating nuanced human driving behaviors, the quest for

unmatched authenticity is complex (E. Pronovost & Roy, 2023). Ground-breaking solu-

tions in this arena are gravitating towards leveraging deep learning paradigms, showcasing

the potential to craft intricate and expansive simulated terrains (E. Pronovost & Roy,

2023).

As we stand at the forefront of these technological advancements, our paper makes

a crucial contribution to the field of autonomous driving. We bridge the gap between

theoretical models and practical applications, providing a nuanced understanding of how

deep learning and virtual scene generation coalesce to enhance AD systems’ efficacy. This

paper not only dissects the underlying mechanics of these systems but also paves the way

for future innovations in the domain. The following section delves into the methodology
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of our comprehensive survey, detailing how we dissect current state-of-the-art techniques

in virtual scene generation and evaluate their impact on the evolution of autonomous

driving technologies.

2.1 Deep Learning Methods

In the world of autonomous driving, the significance of deep learning cannot be under-

stated. These methods, rooted in neural network architectures, have revolutionized the

way vehicles perceive, understand, and navigate their environments. This section delves

into the most prevalent deep learning techniques that have been instrumental in the

advancement of autonomous driving and scene generation.

2.1.1 Convolutional LSTM (ConvLSTM) Network

The ConvLSTM network represents a sophisticated development beyond the classic LSTM

(Long Short-Term Memory) network, tailored specifically for handling data that embod-

ies both spatial and temporal dynamics. Unlike the traditional LSTM, which is built on

fully connected architectures, the ConvLSTM integrates convolutional components into

the mechanisms that govern both the flow of information from input to the network’s

internal state and the transitions between states over time. This architectural enhance-

ment renders the ConvLSTM adept at managing tasks where understanding the spatial

relationships within the data is key.

In particular, the ConvLSTM has been deployed to tackle the challenge of precipita-

tion nowcasting, a task focused on forecasting the near-term intensity of rainfall within

a specific locale. Studies comparing the ConvLSTM’s performance against that of its

fully connected LSTM counterpart have demonstrated its superior ability to grasp the

complex spatiotemporal patterns essential for accurate precipitation prediction. Exper-

iments exploring various ConvLSTM configurations—altering layer counts and kernel

dimensions—consistently show that the ConvLSTM models excel, offering marked im-

provements over the fully connected LSTM(FC-LSTM) approach in this domain.(Graves,

8



2013).

As described in Figure 2.1, the observation of a dynamical system is conducted over

an M×N grid, with each cell containing P time-varying measurements. This system can

be represented at any time as a tensor Xt ∈ RP×M×N . The key objective is to predict

future sequences X̃t+1, . . . , X̃t+K from past J observations, including the current state Xt.

This methodology is crucial for modeling the spatial-temporal dynamics of the system,

incorporating the interactions among variables M , N , P , and the tensors X, X̂, X̃. the

ConvLSTM updates are followed formulation of FC-LSTMas in Figure 2.1:

Figure 2.1: Transforming 2D image to 3D

1. Input Gate:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ⊙ Ct−1 + bi)

2. Forget Gate:

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ⊙ Ct−1 + bf )

3. Cell State:

Ct = ft ⊙ Ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)
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4. Output Gate:

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ⊙ Ct + bo)

5. Hidden State:

Ht = ot ⊙ tanh(Ct)

Where:

• ∗ denotes the convolutional operation.

• ⊙ denotes the Hadamard product (element-wise multiplication).

• σ is the sigmoid activation function.

• W and b are the weights and biases for the respective gates.

Figure 2.2: Structure (inner) of ConvLSTM
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2.1.2 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) were introduced by Ian J. Goodfellow and his

colleagues. The core idea behind GANs is to have two networks, a generative model (G)

and a discriminative model (D), trained simultaneously through adversarial training.

• The Generative Model (G) tries to capture the data distribution. It takes ran-

dom noise as input and generates samples as output.

• The Discriminative Model (D) estimates the probability that a given sample is

from the real training data rather than generated by G.

The training methodology for the generator (G) involves optimizing it to increase the

likelihood of deceiving the discriminator (D) into errors of judgment. This dynamic is

akin to a scenario where G aims to produce indistinguishable counterfeit money, while

D strives to differentiate between authentic and counterfeit bills. As the process evolves,

G becomes adept at creating currency so convincing that D is unable to distinguish the

genuine from the fraudulent.(Goodfellow et al., 2014).

This adversarial interaction leads to G producing data of exceptional quality. The

structure of this relationship is analogous to a minimax game involving two players.

Within the realm of potential functions for G and D, there exists a unique equilibrium

where G perfectly mimics the distribution of the training data, and D, unable to make a

distinction, assigns a probability of 0.5 across the board.(Goodfellow et al., 2014).

Given:

• G(z; θg): A function that maps from noise z to data space using parameters θg.

• D(x; θd): A function that outputs the probability that x came from real data.

The training process involves the following minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))] (2.1)
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Where:

• The first term Ex∼pdata(x)[logD(x)] represents the log probability that the discrimi-

nator correctly classifies real data as real.

• The second term Ez∼pz(z)[log(1−D(G(z)))] represents the log probability that the

discriminator correctly classifies fake data (generated by G) as fake.

2.1.3 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) (Doersch, 2016; Kingma & Welling, 2014; Salimans et

al., 2015; Rezende et al., 2014; Kulkarni et al., 2015) have become a pivotal approach

in the unsupervised learning domain for modeling complex distributions. Built upon

conventional function approximators like neural networks, VAEs are amenable to training

through stochastic gradient descent. Their prowess in generating a multitude of complex

data types, ranging from handwritten digits (Kingma & Welling, 2014; Salimans et al.,

2015) and facial images (Kingma & Welling, 2014; Rezende et al., 2014; Kulkarni et al.,

2015) to house numbers (Kingma et al., 2014; Gregor et al., 2015), CIFAR images (Gregor

et al., 2015), models of physical scenes (Kulkarni et al., 2015), image segmentation tasks

(Sohn et al., 2015), and the forecasting of future scenarios from still images (Walker et al.,

2016), underscores their broad applicability and efficiency in generating varied complex

datasets.

The core principle of Variational Autoencoders (VAEs) is their proficiency in cap-

turing the distributions P (X) across data points X that may exist in spaces of high

dimensionality. Consider the example of images, where each image (or data point) is

composed of thousands to millions of dimensions, represented by pixels. The fundamen-

tal goal of the VAE’s generative model is to model the interdependencies among these

vast dimensions(Doersch, 2016).

Variational Autoencoders (VAEs) adopt a novel strategy for addressing the difficulty

associated with specifying latent variables z. Rather than assigning specific meanings to

each dimension of z through manual selection, VAEs propose that the dimensions of z
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Figure 2.3: Example of CIFAR Image (Gregor et al., 2015)

do not lend themselves to direct interpretation (Doersch, 2016). This perspective leads

to the practice of generating samples of z from a straightforward distribution, such as a

standard normal distribution N(0, I), where I represents the identity matrix (Kingma et

al., 2014).

Figure 2.4: Example graphical model for VAEs.

1. The generative model’s job is to capture the distribution P (X).

2. VAEs model the distribution as:

P (Y |X) = N(f(z,X), σ2 × I)

where f is a deterministic function learned from data.
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3. The objective function for VAEs can be represented as:

EX∼D [logP (X)−D[Q(z|X)∥P (z|X)]]

= EX∼D [Ez∼Q[logP (X|z)]−D[Q(z|X)∥P (z)]]

4. Another representation of the objective function is:

logP (Y |X)−D[Q(z|Y,X)∥P (z|Y,X)]

= Ez∼Q(·|Y,X)[logP (Y |z,X)]−D[Q(z|Y,X)∥P (z|X)]

2.1.4 Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM)

Introduced in 1997, the Long Short-Term Memory (LSTM) network, an advanced vari-

ant of the Recurrent Neural Network (RNN), has since played a pivotal role across

various fields including language modeling, speech recognition, and machine translation

(Hochreiter & Schmidhuber, 1997; Lin & Tegmark, 2017). The LSTM was primarily de-

veloped to address the vanishing gradient problem—a significant issue in standard RNNs.

Its unique architecture features nonlinear, data-driven gates within the RNN cell, which

help preserve the gradient of the loss function over time (Sherstinsky, 2020; Hochreiter

& Schmidhuber, 1997). Traditional RNNs often struggle with training due to vanishing

or exploding gradients. The LSTM cell architecture, with its ability to regulate the flow

of information, offers a robust solution to sustain the objective function’s gradient with

respect to the state signal, making it a critical advancement in neural network design

(Hochreiter & Schmidhuber, 1997; Graves, 2008; Pascanu et al., 2013; Pascanu, 2014).

At the heart of RNNs lies the concept of a hidden state ht, serving as a memory of the

information from past sequences. This state is dynamically updated at every timestep

t, influenced by the current input xt and the preceding hidden state ht−1 (Sherstinsky,

2020):
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ht = σ(Whhht−1 +Wxhxt + bh) (2.2)

Where:

• Whh and Wxh are weight matrices.

• bh is the bias.

• σ is an activation function, often the hyperbolic tangent.

The LSTM cell can be described by the following set of equations(Sherstinsky, 2020):

Forget Gate: ft = σ(Wf · [ht−1, xt] + bf ) (2.3)

Input Gate: it = σ(Wi · [ht−1, xt] + bi) (2.4)

Cell Update: C̃t = tanh(WC · [ht−1, xt] + bC) (2.5)

New Cell State: Ct = ft × Ct−1 + it × C̃t (2.6)

Output Gate: ot = σ(Wo · [ht−1, xt] + bo) (2.7)

New Hidden State: ht = ot × tanh(Ct) (2.8)

Where:

• W terms denote weight matrices (e.g., Wf is the weight matrix for the forget gate).

• b terms denote bias vectors.

• σ is the sigmoid activation function.

• tanh is the hyperbolic tangent activation function.

• [ht−1, xt] denotes the concatenation of ht−1 and xt.

2.1.5 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized kind of neural network designed

primarily for processing grid-like data structures, such as images. They are analogous
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to traditional Artificial Neural Networks (ANNs) but are optimized for image processing

tasks(O’Shea & Nash, 2015; Ciresan et al., 2012, 2011, 2013).

Figure 2.5: Example CNN Architecture.

1. Input Layer: The input layer of a CNN typically holds the pixel values of an

image. For instance, for a grayscale image, the input layer would contain the

intensity values of each pixel, while for a colored image, it would contain RGB

values.(O’Shea & Nash, 2015)

2. Convolutional Layer: The convolutional layer is the core building block of a

CNN. It focuses on local regions of the input and computes the dot product between

the weights of the network and the region of the input image. This layer helps in

detecting local features like edges, textures, and patterns.

3. Pooling Layer: Pooling layers are used to reduce the spatial dimensions of the

data, thereby reducing the computational complexity. Max-pooling is a common
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technique where the maximum value from a region of the image is taken.

4. Fully-Connected Layer: This layer is similar to the traditional ANN, where

neurons are fully connected to the adjacent layers. It helps in classifying the features

extracted by the convolutional layers into various classes.

5. Output Layer: The final layer provides the classification result, assigning the

input image to one of the classes based on the features recognized by the network.

The foundational building blocks of a Convolutional Neural Network (CNN) include sev-

eral key operations that allow these networks to efficiently process and learn from image

data. Each of these operations plays a distinct role in the network’s ability to identify

patterns and features in input data, ultimately contributing to the network’s predictive

capabilities. Below is an overview of these essential operations:

1. Convolutional Operation: Given an input matrix I and a filter (or kernel) matrix

F , the convolution operation is defined as:

(I ∗ F )(x, y) =
∞∑

i=−∞

∞∑
j=−∞

I(i, j)× F (x− i, y − j) (2.9)

This operation slides the filter over the input matrix and computes the dot product

at each position.

2. Pooling Operation: In max-pooling, for a given region R in the matrix, the

output is:

max-pool(R) = max(R) (2.10)

Where max(R) represents the maximum value in the region R.

3. Activation Function: After the convolution operation, an activation function,

such as the Rectified Linear Unit (ReLU), is applied element-wise to introduce

non-linearity:

ReLU(x) = max(0, x) (2.11)
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4. Fully-Connected Operation: In this layer, given an input vector x and weight

matrix W , the output is:

y = Wx+ b (2.12)

Where b is the bias vector.

2.1.6 Transformer-based Models

The transformer architecture is a novel neural network design introduced by Vaswani et

al. in 2017. It revolutionized the field of natural language processing (NLP) by offering a

mechanism to handle sequences without relying on recurrent layers. The core idea behind

transformers is the attention mechanism, which allows the model to weigh the importance

of different parts of the input data when producing an output(Vaswani et al., 2017a).

The transformer consists of an encoder and a decoder. The encoder processes the input

sequence, while the decoder generates the output sequence. Both the encoder and decoder

are composed of multiple identical layers, and each layer has two main components: a

multi-head self-attention mechanism and a position-wise feed-forward network(Vaswani

et al., 2017a).

The multi-head self-attention mechanism allows the model to focus on different parts

of the input sequence simultaneously. It computes a weighted sum of input values (or

”values”) based on their relevance (or ”attention scores”) to a given input position (or

”query”). The attention scores are determined by comparing the query with all other

input positions (or ”keys”)(Vaswani et al., 2017a).

1. Attention Score Calculation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.13)

Where:

• Q is the matrix of queries.

• K is the matrix of keys.
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• V is the matrix of values.

• dk is the dimension of the key vectors.

2. Multi-Head Attention:

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)WO (2.14)

Where:

• Each headi is the result of the attention mechanism applied to linearly trans-

formed versions of Q, K, and V .

• WO is the output weight matrix.

3. Position-wise Feed-Forward Network:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.15)

Where:

• W1 and W2 are weight matrices.

• b1 and b2 are bias vectors.

2.1.7 Causal Autoregressive Flows:

Causal Autoregressive Flows bridge the gap between two significant fields in machine

learning: normalizing flows and causality(Khemakhem et al., 2021). At its core, this

concept highlights a correspondence between a subset of autoregressive normalizing flows

and identifiable causal models.

Normalizing Flows: These are models that aim to express the log-density of obser-

vations as an invertible and differentiable transformation of latent variables. The latent

variables typically follow a simple base distribution, and the density of the observations

can be derived using a change of variables formula(Papamakarios et al., 2019; Kobyzev et

al., 2020; Khemakhem et al., 2021). Autoregressive flows, a subtype of normalizing flows,
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are designed to simplify the computation of the Jacobian determinant by ensuring their

Jacobian matrices are lower triangular(Papamakarios et al., 2018; Huang et al., 2018).

Causality: In the context of this work, autoregressive flow architectures define an or-

dering over variables, similar to a causal ordering. This makes them suitable for various

causal inference tasks, such as causal discovery, interventional predictions, and counter-

factual predictions(Khemakhem et al., 2021).

The Causal Autoregressive Flow (CAREFL) model is introduced as a method to

leverage the properties of autoregressive flows for causal inference. This model is partic-

ularly powerful because it can identify the true direction of causal influence and provides

a generalization of the additive noise model, which is a well-known model in causal

discovery(Khemakhem et al., 2021).

1. The density of observations using normalizing flows:

px(x) = pz(T
−1(x))|detJT−1(x)|

Where:

• px is the density of observations.

• pz is the density of latent variables.

• T is the transformation.

• J is the Jacobian matrix.

2. The transformation in autoregressive flows:

xj = τj(zj, x<π(j))

Where:

• τj are called transformers.

• π is a permutation that specifies an autoregressive structure on x.
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3. For affine transformations in the autoregressive flow:

τj(u, v) = esj(v)u+ tj(v)

Where:

• sj and tj are functions defining the affine transformation.

4. The measure of causal direction is defined as:

R = E[logLπ=(1,2)(xtest;xtrain)]− E[logLπ=(2,1)(xtest;xtrain)]

Where:

• R is positive if x1 is the causal variable and negative if x2 is the causal variable.

2.2 Compilation
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Authors Scene Scenarios Data Sources Theoretical Frameworks

(D. Zhao & Liu, 2017) Traffic scene
Primary data (large amounts of traffic
scene videos and GPS data) and
public data (KITTI dataset)

Architecture: GAN (Deep convolutional
generative adversarial network)
Developed by authors: No

(H. Avşar & Karacan, 2022) Home/office scene Primary data (Chess scene of 7-Scenes dataset)
Architecture: Generative adversarial networks
Developed by authors: No

(P. Cai & Liu, 2020) Driving scene Public data (RobotCar dataset)

Architecture: LSTM network (VTGNet, an
uncertainty-aware vision-based trajectory
generation network)
Developed by authors: Yes

(M. Qi & Luo, 2020) Driving scene
Public data (public datasets, i.e., Cityscapes
and CamVid)

Architecture: GAN: STC-GAN (Spatio-Temporally
Coupled Generative Adversarial Networks)
Developed by authors: Yes

(E. Pronovost & Roy, 2023) Driving scene

Public data (dataset containing 6 million
driving scenes from San Francisco, Las Vegas,
Seattle, and the campus of the Stanford
Linear Accelerator Center)

Architecture: Variational autoencoders
(Scene diffusion)
Developed by authors: Yes

(Periyasamy & Behnke, 2023) Object scene Public data (DeepCPD dataset)

Architecture: Not specified deep-learning technique
Differentiable rendering (StilllebenDR, a
lightweight, scalable differentiable renderer)
Developed by authors: Yes

(A. Ghosh & Chowdhury, 2016) Driving scene Public data (game Road Rash)
Architecture: GAN
Developed by authors: No

(W. Ding & Zhao, 2023) Driving scene Public data
Architecture: Not specified deep-learning technique
Causal Autoregressive Flow (CausalAF)
Developed by authors: Yes

(J. Devaranjan & Fidler, 2020) Driving scene
Primary data (synthetic aerial imagery) and
public data (MNIST dataset)

Architecture: No specified deep-learning technique
Meta-Sim2 (a graph generation model of synthetic scenes)
Developed by authors: Yes

(Kar et al., 2019) Driving scene Public data (MNIST-like data)
Architecture: No specified deep-learning technique
Meta-Sim2 (a graph generation model of synthetic scenes)
Developed by authors: Yes

(Tan et al., 2021) Traffic scene Public data (Argoverse and ATG4D)
Architecture: Neural autoregressive model (SceneGen)
Developed by authors: Yes

(D. J. Fremont & Seshia, 2019) Driving scene Public data (Grand Theft Auto V)

Architecture: No specified deep-learning technique
Scenic: A probabilistic programming language for
scenario specification and scene generation
Developed by authors: Yes

(Bergamini et al., 2021) Driving scene Public data (Lyft Motion Prediction Dataset)

Architecture: No specified deep-learning technique
Scenic: A probabilistic programming language for
scenario specification and scene generation
Developed by authors: Yes

(Feng et al., 2023) Traffic scene Public data (Waymo Open Dataset)

Architecture: Transformer-based model
(autoregressive neural generative model)
TrafficGen: A traffic scenario generator
Developed by authors: Yes

Table 2.1: Summary of scene scenarios, data sources, and theoretical frameworks
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Table 2.1 presents a compilation of 14 relevant studies focusing on virtual scene appli-

cations within autonomous driving (AD). These studies cover various aspects, including

research problems, data sources, theoretical frameworks, performance metrics, overall

performance, and data processing/augmentation techniques. The approaches employed

diverse scene generation methods such as GANs, causal autoregressive flow, and scene

diffusion. For example, several papers utilized GAN principles or deep convolutional

generative adversarial networks (DCGAN) to generate realistic traffic scenes, improving

driving safety (Bergamini et al., 2021), (Feng et al., 2023), (D. J. Fremont & Seshia,

2019) (A. Ghosh & Chowdhury, 2016), (Tan et al., 2021), (D. Zhao & Liu, 2017).

One study introduced the STC-GAN, a novel GAN model, for predictive scene parsing

(M. Qi & Luo, 2020) . Instead of generating safety-critical scenarios, another paper used

a causality-based generative model to estimate risk situations within generated driving

scenes, enhancing AV safety (W. Ding & Zhao, 2023) . Some studies focused on optimizing

parameters of real images for synthetic data generation using techniques like Meta-Sim2

(J. Devaranjan & Fidler, 2020) and Meta-Sim (Kar et al., 2019) .

However, certain papers delved beyond driving scene generation. For instance, one

study employed Pix2pixHD, a type of GAN, to convert night-time LIDAR or Kinect

sensor images into daytime images with depth map data, yielding indistinguishably real-

istic outputs (H. Avşar & Karacan, 2022). In addressing the inefficiencies of traditional

AD approaches to respond to varied driving scenarios, researchers proposed VTGNe, an

uncertainty-aware vision-based generation network, to enhance vehicle navigation, safety

measures, and recovery behaviors against driving errors (P. Cai & Liu, 2020). Another

work generated complex driving scenes through diffusion and object detection in an end-

to-end differentiable architecture (E. Pronovost & Roy, 2023) . Additionally, a study

generated 2D images from 3D scene descriptions using an efficient scalable differentiable

renderer called StilllebenDR (Periyasamy & Behnke, 2023) .
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2.2.1 Scene Scenarios

The review identified five primary scene scenarios: driving scenes (9 papers), traffic scenes

(3 papers), home/office scenes (1 paper), and object scenes (1 paper). These efforts aimed

to simulate real-world scenes (Feng et al., 2023; A. Ghosh & Chowdhury, 2016; D. Zhao &

Liu, 2017; P. Cai & Liu, 2020; E. Pronovost & Roy, 2023) , generate 2D images from 3D

scene descriptions (H. Avşar & Karacan, 2022) (Periyasamy & Behnke, 2023), or predict

scene parsing (M. Qi & Luo, 2020) .

2.2.2 Research Problems

All reviewed works directly or indirectly aimed to enhance AD or human safety. The

most common problem addressed was the scarcity of rich real-world data for safe and

efficient AD (10 papers). Many researchers highlighted insufficient driving/traffic scene

data for training unmanned vehicles in specific or hazardous environments (Bergamini

et al., 2021; Feng et al., 2023; D. J. Fremont & Seshia, 2019; A. Ghosh & Chowdhury,

2016; Tan et al., 2021; D. Zhao & Liu, 2017; W. Ding & Zhao, 2023; J. Devaranjan &

Fidler, 2020; Kar et al., 2019; E. Pronovost & Roy, 2023) . Other addressed problems

included converting night-time images to daytime images (H. Avşar & Karacan, 2022),

AD vehicles’ lack of imitation learning capability (P. Cai & Liu, 2020) , incompatibility

of the standard rasterization and deep learning methods (Periyasamy & Behnke, 2023),

and challenges in anticipating future scene parsing with limited annotated training data

(M. Qi & Luo, 2020) .

2.2.3 Data Sources

The papers utilized primary data, public data, or both to tackle their research problems.

Most studies used publicly available datasets such as KITTI datasets (D. Zhao & Liu,

2017) , RobotCar datasets (P. Cai & Liu, 2020), Cityscapes and CamVid (M. Qi &

Luo, 2020) , DeepCPD datasets (Periyasamy & Behnke, 2023) , Waymo Open Datasets

(Feng et al., 2023), and Lyft Motion Prediction Datasets (Bergamini et al., 2021). While
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these datasets were predominantly real driving data, a few used data from popular racing

games (D. J. Fremont & Seshia, 2019) (A. Ghosh & Chowdhury, 2016). Some authors

employed both primary and public data for traffic scene generation (D. Zhao & Liu, 2017)

, while others focused on non-traffic/driving scenes using a limited number of input images

(H. Avşar & Karacan, 2022) (Periyasamy & Behnke, 2023) . The need for more extensive

data was evident in research requiring comprehensive model training and testing.

2.2.4 Data Pre-processing/Augmentation

The vast majority of the reviewed studies (10 papers) employed some pre-processing or

augmentation techniques before feeding their data into their model. The most common

pre-processing technique was image resize (5 papers), followed by image categorization (4

papers), image vectorization (2 papers), and image labeling (2 papers). Studies resized

images to 1247 x 384 (P. Cai & Liu, 2020) , 256 × 256 (M. Qi & Luo, 2020) (E. Pronovost

& Roy, 2023), or 240 x 320 (Periyasamy & Behnke, 2023) . Image categorization was also

used to categorize raw images into different traffic scenes [6], environmental conditions

(P. Cai & Liu, 2020), and city conditions (J. Devaranjan & Fidler, 2020). This catego-

rization is especially invaluable in predicting AD responses to different situations. Image

data were also labeled prior to data training to provide the driving direction of vehicles

(P. Cai & Liu, 2020) and enable predictive scene parsing (M. Qi & Luo, 2020) . Lastly,

some authors converted scene images into a vector format, rasterizing high-definition se-

mantic maps to create a bird’s-eye view representation of the driving state (Bergamini

et al., 2021) or vectorizing scenes into a set of vectors (Feng et al., 2023). However, not

all the papers pre-processed or augmented their data. Some studies that fall under this

category fed video-game data into their model without modifying them (D. J. Fremont

& Seshia, 2019) (A. Ghosh & Chowdhury, 2016). Others required no data pre-processing

as the cameras used were configured to capture ideal formats of images (H. Avşar &

Karacan, 2022).
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2.2.5 Theoretical Frameworks

Most of the reviewed works (9 papers) employed various deep learning techniques. The

most used deep learning technique was GANs (A. Ghosh & Chowdhury, 2016) (D. Zhao

& Liu, 2017) (M. Qi & Luo, 2020) (H. Avşar & Karacan, 2022) . Some authors modified

their GAN models, using deep convolutional generative adversarial networks (D. Zhao

& Liu, 2017) and spatiotemporally coupled generative adversarial networks (M. Qi &

Luo, 2020) to train their data, while some studies leveraged the traditional GAN mod-

els to solve the image and video processing problems (A. Ghosh & Chowdhury, 2016)

(H. Avşar & Karacan, 2022) . However, other related works tested their models using

other deep learning techniques, such as LSTM (P. Cai & Liu, 2020), variational autoen-

coders (E. Pronovost & Roy, 2023), transformer-based models (Feng et al., 2023), and

neural autoregressive networks (Tan et al., 2021) .

While many of the reviewed papers pointed out their deep learning approaches, others

(6 papers) concentrated on research problems not directly linked to a specific deep learn-

ing technique. For instance, in (Periyasamy & Behnke, 2023) , the authors focused on

equipping all deep learning methods with the capability of generating 2D images from 3D

images using a differentiable render known as StilllebenDR. Similarly, one paper lever-

aged all learning networks to create a system capable of realistically simulating driving

experiences (Bergamini et al., 2021). A few research works also concentrated on aspects

such as causal autoregression flow (W. Ding & Zhao, 2023) , the appearance gap between

synthetic and real-world images (J. Devaranjan & Fidler, 2020) (Kar et al., 2019) , and

programming language for scene generation and specification [3]. Hence, these papers

did not need to specify deep learning techniques used.

2.2.6 Performance Metrics

The reviewed studies employed diverse metrics to evaluate their solutions. Some studies (6

papers) used single metrics (D. Zhao & Liu, 2017) (W. Ding & Zhao, 2023) (J. Devaranjan

& Fidler, 2020) (Kar et al., 2019) (H. Avşar & Karacan, 2022) (E. Pronovost & Roy,

2023) (Periyasamy & Behnke, 2023), while others used combinations of parameters to
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assess their models (Bergamini et al., 2021) (Feng et al., 2023) (D. J. Fremont & Seshia,

2019), (Tan et al., 2021) (M. Qi & Luo, 2020) (P. Cai & Liu, 2020) . A few studies did

not explicitly provide metric information but evaluated based on parameters like image

appearance and training error (A. Ghosh & Chowdhury, 2016) (D. Zhao & Liu, 2017) .

The most used metric (3 papers) was mean maximum discrepancy (MMD). Au-

thors leveraged this metric to evaluate the degree of similarity between created scenes

(E. Pronovost & Roy, 2023) , scene structures (J. Devaranjan & Fidler, 2020) (Kar

et al., 2019) ,and vehicle attribute distributions (Feng et al., 2023). Other metrics in

the reviewed papers included loss trends (H. Avşar & Karacan, 2022) , pose estimation

(Periyasamy & Behnke, 2023), collision rate (W. Ding & Zhao, 2023) , precision and re-

call (D. J. Fremont & Seshia, 2019), negative loglikelihood (Tan et al., 2021) , and other

metric combinations in Table xx (Bergamini et al., 2021) (Feng et al., 2023) (M. Qi &

Luo, 2020) (P. Cai & Liu, 2020) .

2.2.7 Overall Performance

Comparing performance across papers proved challenging due to the diverse metrics used

for different tasks. While some studies (9 papers) compared their models with previous

research (Feng et al., 2023) (Tan et al., 2021) (D. Zhao & Liu, 2017) (M. Qi & Luo, 2020)

(W. Ding & Zhao, 2023) (J. Devaranjan & Fidler, 2020) (Kar et al., 2019) (P. Cai & Liu,

2020) (E. Pronovost & Roy, 2023) , others presented their results without comparisons

(Bergamini et al., 2021) (D. J. Fremont & Seshia, 2019) (A. Ghosh & Chowdhury, 2016)

(H. Avşar & Karacan, 2022) (Periyasamy & Behnke, 2023). Validation against different

datasets or real-world scenarios was observed in the works of (J. Devaranjan & Fidler,

2020) , (Feng et al., 2023) (Kar et al., 2019) , and (Tan et al., 2021) . Most studies

reported significant improvements, with focus areas ranging from generating realistic

driving scenes (Tan et al., 2021) (D. Zhao & Liu, 2017) (J. Devaranjan & Fidler, 2020)

(W. Ding & Zhao, 2023) (J. Devaranjan & Fidler, 2020) (Kar et al., 2019) (E. Pronovost

& Roy, 2023) (Periyasamy & Behnke, 2023) to enhancing programming languages for

scene generation (D. J. Fremont & Seshia, 2019) , traffic trajectories in different urban
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areas (P. Cai & Liu, 2020) , semantic classification (M. Qi & Luo, 2020) , AD learning

(A. Ghosh & Chowdhury, 2016) , AD safety (W. Ding & Zhao, 2023), and self-driving

simulations from real-world observations (Bergamini et al., 2021). Notably, all solutions

presented in these papers have limitations, paving the way for future research.
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Chapter 3

Pipeline

3.1 Data and Preprocessing

The dataset under investigation is a structured collection in the form of a tibble, consisting

of 136,784 records spanning seven distinct attributes. This dataset was obtained from

the Orange County Government database in Florida, containing a full year of data. As

it is open source, researchers have access to a comprehensive resource for analysis and

modeling.

This extensive dataset serves as a critical foundation for further research and devel-

opment, offering a wide-ranging perspective on the domain under study.

• DATE: POSIXct vector representing the date of the emergency call, with a stan-

dard format highlighting the specificity of each event occurrence.

• TIME: POSIXct vector indicating the time of day the call was logged, formatted

to capture the precise moment of each emergency situation.

• Call TYPE: Character vector that succinctly classifies the nature of each call using

an internal shorthand code.

• CALL TYPE DESC: Descriptive character vector providing a more detailed

explanation of the call type, such as ”MEDICAL-DELTA” for urgent medical situ-

ations or ”FIRE ALARM” for potential fire-related emergencies.
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• XCOORD and YCOORD: Character vectors representing the longitudinal and

latitudinal coordinates respectively, pinpointing the exact location of the incident.

• ADDRESS: Character vector providing the physical address associated with each

call, further aiding in the geographical pinpointing of emergencies.
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Figure 3.1: Head of 911 Records Dataset.
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Figure 3.2: Head of Weather Dataset.
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Preprocessing steps undertaken include the conversion of coordinate data from char-

acter to numeric format to facilitate spatial analysis, the parsing of date-time information

into a consistent POSIXct format, and the cleansing of any anomalies or inconsistencies

within the call type descriptions.

Recognizing the limitations of the initial feature set for robust model construction, we

embarked on a comprehensive data enrichment process. The first step involved the en-

hancement of the primary dataset with precise postal codes for each address. This was ac-

complished by leveraging a geocoding API, which allows for the conversion of geographic

coordinates into postal codes. The geocoding API, which translates geographic coordi-

nates into postal codes, was critical for this enhancement. The function get postcode

was used to retrieve postal codes from latitude and longitude data, with a throttle to

ensure compliance with usage policies. This addition provided a vital categorical variable

to the dataset, bolstering its utility for further analysis and modeling.

In addition to this, we incorporated demographic data, hypothesizing that such in-

formation could offer valuable insights for our classification efforts. This demographic

dataset, rich in population statistics associated with postal codes, was seamlessly inte-

grated into our main dataset through an inner join operation, ensuring consistency by

the shared postal code attribute.

Further bolstering our feature set, we integrated a third dataset detailing the near-

est fire station locations, utilizing postal codes as the relational key. This dataset

(data2) contained information on the spatial coordinates (X station, Y station), ad-

dress (ADDR station), city, state (STATE), the jurisdiction (JURIS), and the unique oper-

ational number (OC NUM) for each fire station.

The primary goal of this project is to generate synthetic images from real-world data,

so merging various datasets helps create a more realistic context for the scenarios we’re

trying to model. By incorporating the fire station locations, we add depth to the scene-

generation process, ensuring that our synthetic data closely mimics real-life situations.

Additionally, by combining multiple datasets, we can examine the relationships be-

tween different features. Understanding these connections can lead to insights that im-
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prove the accuracy and reliability of our generated scenarios. This step is crucial for

developing robust models and simulations that reflect the complexity of real-world emer-

gency responses.

Thus, the original dataset was enriched with two additional datasets via inner joins,

predicated on the postal codes obtained through the geocoding API. The new fea-

tures—postal code, demographic profiles, and proximity to emergency services—were

assimilated to provide a multidimensional view of the emergency calls, enabling a more

nuanced analysis and modeling.

#API for postcodes

def get_postcode(lat, lon):

time.sleep(1) # To avoid overloading the server

url = f"https://nominatim.openstreetmap.org/reverse?format=json

&lat={lat}&lon={lon}"

response = requests.get(url)

if response.status_code == 200:

content = response.json()

if ’address’ in content and ’postcode’ in content[’address’]:

return content[’address’][’postcode’]

return None

The resulting enriched dataset now stands as a testament to the power of data inte-

gration, promising a more informed and effective classification model.

3.1.1 Missing Values

During the preprocessing phase, dealing with missing values is crucial to maintain the

integrity of the dataset and ensure accurate modeling. To address this, we employed a

statistical method using the mode, which represents the most common value within a

particular column.

The Python function fill with mode leverages the mode function from the scipy.stats

module to ascertain the most frequently occurring value, or mode, in a specified column.
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Once the mode is determined, the function replaces all missing (NaN) entries in that

column with the mode value. This method is particularly effective for categorical data

where the mode represents the most typical category.

We applied this function to the ’Day’ and ’Month’ columns of our dataset, which are

critical temporal features for our analysis. By filling the missing values with the mode, we

preserve the distributional characteristics of our dataset and avoid the introduction of bias

that could result from other imputation methods, such as mean or median replacement,

which are less suitable for categorical data.

from scipy.stats import mode

# Function to fill missing values with mode

def fill_with_mode(df, column_name):

mode_value = df[column_name].mode()[0]

df[column_name].fillna(mode_value, inplace=True)

# Fill missing values in ’Day’ and ’Month’ with their respective modes

fill_with_mode(data, ’Day’)

fill_with_mode(data, ’Month’)

This approach ensures that the temporal aspect of the dataset remains as accurate as

possible, reflecting the true nature of the emergency call occurrences.

3.1.2 Preprocceing the type of features

In the preprocessing phase of our project, we performed several critical operations on our

dataset to prepare it for further analysis. A key aspect of this preparation involved the

manipulation of date and time data, as well as the conversion of coordinate data into a

suitable numeric format.

from datetime import datetime
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# Load your data

# Replace ’data.csv’ with the path to your dataset

data = pd.read_csv(’data.csv’)

# Convert the DATE and TIME columns to datetime objects

data[’DATE’] = pd.to_datetime(data[’DATE’], format=’%Y-%m-%d’)

data[’TIME’] = pd.to_datetime(data[’TIME’]).dt.time

# Combine the DATE and TIME columns to create a new DateTime column

data[’DateTime’] = data.apply(lambda row: datetime.combine(row

[’DATE’], row[’TIME’]), axis=1)

# Convert XCOORD and YCOORD columns to numeric type

data[’XCOORD’] = pd.to_numeric(data[’XCOORD’], errors=’coerce’)

data[’YCOORD’] = pd.to_numeric(data[’YCOORD’], errors=’coerce’)

# Check for missing data and remove rows with missing data

print(data.isna().sum())

data = data.dropna()

# Extract day, month, year, hour, and minute information from the

DateTime column

data[’Day’] = data[’DateTime’].dt.day

data[’Month’] = data[’DateTime’].dt.month

data[’Year’] = data[’DateTime’].dt.year

data[’Hour’] = data[’DateTime’].dt.hour

data[’Minute’] = data[’DateTime’].dt.minute

The process involved several steps:

1. Data Loading: The dataset, stored in a CSV file, is loaded into a DataFrame
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using Pandas.

2. Date and Time Conversion: The ’DATE’ and ’TIME’ columns, initially in

string format, are converted into Python datetime objects for more efficient manipulation.

3. Combining Date and Time: A new column, ’DateTime’, is created by combin-

ing the ’DATE’ and ’TIME’ columns. This unified column facilitates temporal analysis

by providing precise timestamps.

4. Coordinate Conversion: The ’XCOORD’ and ’YCOORD’ columns, represent-

ing geographical coordinates, are converted from strings to numeric values. This conver-

sion is necessary for any spatial analysis that might be conducted.

5. Handling Missing Data: We conducted a check for missing values in the dataset

and removed rows containing any missing data, ensuring the cleanliness and reliability of

our dataset.

6. Extraction of Temporal Features: From the ’DateTime’ column, detailed

temporal information such as day, month, year, hour, and minute is extracted, allowing

for a granular temporal analysis of the emergency calls.

These preprocessing steps were essential in transforming the raw data into a structured

format, ripe for analysis and modeling.

3.1.3 Outliers

In our data analysis, we conducted two significant statistical investigations to understand

the temporal distribution of emergency calls.

Firstly, we examined the dates with the highest number of calls:

# Group by ’DATE’ and count the occurrences

top_dates = data.groupby(’DATE’).size().reset_index(name=’Count’)

# Sort by ’Count’ in descending order and get the top 10

top_dates = top_dates.sort_values(by=’Count’, ascending=False).head(10)

In this analysis, the dataset was grouped by the ’DATE’ column, and the occurrences

of calls on each date were counted. We then sorted these dates in descending order based
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on the number of calls and extracted the top 10 dates. This provided us with insights

into specific days with unusually high emergency call volumes.

Secondly, we analyzed the dataset to identify outliers in terms of call volumes:

data_grouped = data.groupby(’DATE’).size().reset_index(name=’num_calls’)

# Calculate the first and third quartiles (Q1 and Q3)

Q1 = data_grouped[’num_calls’].quantile(0.25)

Q3 = data_grouped[’num_calls’].quantile(0.75)

# Calculate the Interquartile Range (IQR)

IQR = Q3 - Q1

# Define bounds for outliers

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

# Identify outliers

outliers = data_grouped[(data_grouped[’num_calls’] < lower_bound) |

(data_grouped[’num_calls’] > upper_bound)]

print(outliers)

This segment of the analysis focused on identifying days with an atypical number

of calls. By calculating the interquartile range (IQR) and defining bounds for outliers,

we could pinpoint days where the number of calls significantly deviated from the norm.

This helped in identifying anomalies or potential areas of concern that may need further

investigation. In our analysis, we conducted a detailed exploration of the frequency of

emergency calls in relation to postal codes. This exploration aimed to identify postal

codes with high emergency call volumes and detect any outliers that significantly deviate

from the typical call frequency pattern.
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Analysis of Top Postal Codes by Call Frequency:

# Group by ’postcode’ and count the occurrences

top_postcodes = data.groupby(’postcode’).size().reset_index(name=’Count’)

# Sort by ’Count’ in descending order and get the top 10

top_postcodes = top_postcodes.sort_values(by=’Count’, ascending=False).head(10)

print(top_postcodes)

In this segment, the dataset was grouped by the ’postcode’ column, and the number

of calls for each postal code was calculated. These counts were then sorted in descending

order to identify the top 10 postcodes with the highest call volumes. This analysis helped

pinpoint areas with potentially higher needs for emergency services.

Identification of Outliers in Call Frequencies by Postal Code:

# Group by ’postcode’ and count the occurrences

data_grouped2 = data.groupby(’postcode’).size().reset_index(name=’num_calls’)

# Calculate the first and third quartiles (Q1 and Q3)

Q1 = data_grouped2[’num_calls’].quantile(0.25)

Q3 = data_grouped2[’num_calls’].quantile(0.75)

# Calculate the Interquartile Range (IQR)

IQR = Q3 - Q1

# Define bounds for outliers

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

# Identify outliers
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outliers = data_grouped2[(data_grouped2[’num_calls’] < lower_bound) |

(data_grouped2[’num_calls’] > upper_bound)]

print(outliers)

This analysis focused on detecting outliers in the number of calls per postcode. Using

the interquartile range (IQR) and quartiles, we defined boundaries to identify postal codes

with unusually high or low call frequencies. This approach is instrumental in highlighting

postal codes that may require special attention or are behaving anomalously compared

to the majority.

Both these analytical approaches are vital for understanding the spatial distribution

of emergency calls, which is crucial for effective resource allocation and planning in emer-

gency response strategies.

3.1.3.1 Handling of Outliers

During our analysis, a deeper examination of the outliers, particularly with respect to

dates, revealed a significant insight. The outlier dates coincided with the occurrence of

Hurricane Ian, a major event that naturally led to an abnormal spike in emergency calls.

To maintain the integrity of our analysis and avoid skewing the data with this anomaly,

we made the decision to exclude the dates pertaining to Hurricane Ian from our dataset.

Additionally, our investigation into postal code-related outliers identified a single post-

code with a disproportionately high number of emergency calls. Recognizing that outright

removal of this postcode could lead to the loss of valuable information, we instead opted

for a more nuanced approach. We reduced the number of entries for this particular post-

code by a small margin, akin to an undersampling technique. This adjustment aimed to

mitigate the impact of this outlier on our overall analysis without entirely eliminating

the valuable data it contained.

These strategic decisions in handling outliers were crucial to ensure that our analy-

sis accurately reflected typical emergency call patterns, thereby providing more reliable

insights for emergency response planning and resource allocation.
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3.1.4 Feature Engineering

To enhance the predictive capability of our models, we conducted extensive feature en-

gineering on the dataset. This process involved creating new, meaningful features from

the existing data, which provided deeper insights and improved the model’s accuracy.

1. Distance from City Center: We calculated the Manhattan distance of each

emergency call location from a predefined city center point. This was achieved by

converting the X and Y coordinate columns to numeric types and then applying the

Manhattan distance formula. The Manhattan distance, also known as the taxicab

or city block distance, is calculated as the sum of the absolute differences of their

Cartesian coordinates; specifically, it is |x1−x2|+|y1−y2| where (x1, y1) and (x2, y2)

are the Cartesian coordinates of the emergency call location and the city center,

respectively.

2. Categorization of Call Types: We categorized the types of emergency calls into

distinct groups such as ’Ambulance’, ’Fire Brigade’, ’Police’, ’Rescue Vehicles’, and

’Combined Services’. This categorization was based on the nature of the emergency

as indicated in the ’Call TYPE’ column.
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Figure 3.3: Distribution of emergency calls by category after Categorization.

3. Further Categorization of Call Descriptions: We applied a similar categoriza-

tion process to the ’CALL TYPE DESC’ column, grouping the calls into ’EMS’,

’Traffic’, ’Fire’, and ’Other’. This classification relied on the detailed descriptions

provided and was aimed at refining the categorization process.

4. Time of Day and Season Extraction: The dataset was further enriched by

deriving the ’TimeOfDay’ and ’Season’ from the ’Hour’ and ’Month’ columns, re-

spectively. The ’TimeOfDay’ was categorized into ’Night’, ’Morning’, ’Day’, and

’Evening’, while the ’Season’ was classified into ’Winter’, ’Spring’, ’Summer’, and

’Fall’. These features were expected to reveal temporal patterns in emergency call
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frequencies.

These newly engineered features significantly enhanced our dataset, providing a mul-

tifaceted view of the emergency calls. This enriched dataset was expected to offer a more

accurate and comprehensive basis for our subsequent data modeling and analysis efforts.

3.1.5 Seasonality and Distribution Analysis

Figure 3.4: Histograms

We assessed the seasonality and distribution of emergency calls through a series of

histograms representing various temporal aspects.

• The Month Histogram suggests a moderate seasonality with a slight uptick in

calls during the middle of the year, hinting at possible influences of seasonal factors.

• The Day Histogram displays a consistent call distribution across the month,

indicating the absence of day-specific trends in the frequency of calls.
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• In the Day of Week Histogram, the distribution of calls is relatively even, sug-

gesting that emergency incidents are fairly distributed throughout the week.

• The Hour Histogram shows a pronounced diurnal trend, with calls increasing

through the day and peaking in the evening, then declining during the night hours.

• The Log of Distance From Center Histogram reveals a concentrated frequency

of calls at certain distances from the city center, likely reflecting the denser areas

of population and activity.

These visualizations are crucial for understanding the temporal dynamics of emer-

gency calls and guiding the allocation of resources and services.

3.1.6 Feature Engineering and Model Tranings for Feature Im-

portance

In the pursuit of understanding the influence of various factors on performance outcomes,

I chose to utilize the CatBoost classifier due to its exceptional capability in handling and

analyzing complex datasets, particularly those rich in categorical data. The motivation

behind employing this advanced machine learning algorithm was to meticulously dissect

and discern the relative importance and impact of diverse variables such as time (e.g.,

specific months), geographical location (e.g., distance from a central point), and environ-

mental conditions (e.g., weather patterns) on the performance metrics in question.

The CatBoost classifier, renowned for its proficiency with categorical data, allows

for a nuanced exploration of how each factor contributes to the overall outcomes. For

instance, by examining whether certain months bear more significance than others, or as-

sessing the role of distance and weather conditions, I aimed to unveil underlying patterns

and correlations that might otherwise remain obscured. This methodological approach

facilitated a deeper understanding of the dynamics at play, enabling the identification of

key drivers of performance and areas where targeted interventions could yield substantial

improvements.
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Furthermore, the use of CatBoost’s feature importance tool provided an invaluable

lens through which to evaluate the contribution of each variable to the model’s predictive

accuracy. This analysis is crucial for prioritizing resources and strategies in scenarios

where enhancing performance is paramount. In essence, the application of the CatBoost

classifier served not only to illuminate the effects of various factors on performance but

also to inform decision-making processes with data-driven insights, underscoring the al-

gorithm’s robustness and versatility in analytical endeavors.

import pandas as pd

from catboost import CatBoostClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, accuracy_score

selected_features = [’Month’, ’Day’, ’Hour’, ’postcode’]

X = data[selected_features]

y = data[’Category’]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=123)

cat_features = [i for i, col in enumerate(X_train.columns) if X_train[col].dtype == ’object’]

catboost_model = CatBoostClassifier(

iterations=1000,

learning_rate=0.1,

depth=6,

cat_features=cat_features,

verbose=200,

random_state=123

)

catboost_model.fit(X_train, y_train)

y_pred = catboost_model.predict(X_test)

print(classification_report(y_test, y_pred))

print("Accuracy:", accuracy_score(y_test, y_pred))

In this code snippet, we utilize the CatBoost model to identify and visualize the
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importance of various features in our dataset. Firstly, we extract the feature importances

from our trained CatBoost model using the get future importance method. This method

returns a list of importance scores, where each score corresponds to a feature in our

dataset, indicating the relative importance of each feature in the model’s predictions.

Next, we set up a matplotlib figure with a specified size of 12x6 inches to provide a

clear and spacious visualization. We then create a bar chart using plt.bar(), where the

x-axis represents the indices of our features (ranging from 0 to the number of features),

and the y-axis represents the importance scores of these features.

3.1.7 Seasonality and Distribution Analysis

Figure 3.5: Feature Importance 1

3.1.8 Seasonality and Distribution Analysis

In conclusion, our comprehensive analysis utilizing the CatBoost classifier has led us to

ascertain that proximity to the city center is a significant determinant of performance

outcomes. This finding underscores the pivotal role that geographical location plays in

influencing the metrics under consideration. The nuanced examination facilitated by the
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Figure 3.6: Feature Importance 2

CatBoost’s feature importance tool has enabled us to pinpoint the centrality of location

as a key factor, surpassing other variables we initially hypothesized to have considerable

impact, such as specific time periods and environmental conditions.

However, it’s also crucial to acknowledge a notable limitation encountered in our

dataset - the underrepresentation of data from rural areas. This scarcity has implications

for the breadth and applicability of our findings, particularly in extending our analysis

to scenarios beyond urban contexts. After careful deliberation and in light of the data

imbalance, we have decided to refrain from drawing extensive conclusions regarding en-

vironmental factors. This decision stems from a commitment to ensuring the reliability

and validity of our insights, acknowledging that the current dataset does not furnish a

comprehensive view of the rural landscape.

Moving forward, it’s imperative that future investigations seek to incorporate a more

balanced representation of both urban and rural data. This would not only enrich the

robustness of the analysis but also enable a more holistic understanding of the factors

affecting performance across diverse geographical settings. Our study highlights the im-
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portance of geographical proximity in urban contexts, yet it also opens avenues for further

research into the multifaceted interactions between location, environmental conditions,

and other variables in shaping outcomes across different settings.
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Chapter 4

Reverse Engineering

4.1 Diffusion Models

In our thesis, we made a key decision to use diffusion models for synthetic image gener-

ation, motivated by their remarkable ability to create realistic and diverse images from

textual descriptions. This choice was driven by the need to produce a wide range of images

that accurately represented the detailed requirements of our research, where conventional

data collection methods were either inadequate or impractical.

To harness the full potential of diffusion models, we conducted an in-depth study of

their underlying architecture and operational mechanisms. Diffusion models represent

a significant advancement in generative AI technology, bridging the fields of natural

language processing (NLP) and computer vision to interpret and visualize complex textual

inputs as detailed images.

The core of diffusion models’ architecture is a variant of the Transformer model,

originally made famous for its outstanding performance in NLP tasks. The Transformer’s

ability to process sequences of data and capture long-range relationships makes it a

perfect fit for diffusion models, allowing them to understand and contextualize textual

descriptions with impressive accuracy. Moreover, diffusion models use a modified version

of a large language model to process textual inputs, which guides the process of image

generation.
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The innovative aspect of diffusion models also lies in a technique called VQ-VAE-2

(Vector Quantized-Variational AutoEncoder 2), which aids in compressing and decom-

pressing images into a more manageable size. This process enables the creation of high-

quality images that closely align with the given textual descriptions, effectively bridging

the gap between textual and visual data.

By utilizing the architecture of diffusion models, we aimed to generate synthetic im-

ages that could significantly improve the quality and variety of data for our thesis. The

capacity to produce custom images tailored to specific research needs opened new pos-

sibilities for exploration and analysis, enabling the investigation of scenarios that would

be difficult to replicate in the real world.

In summary, our decision to use diffusion models was strategic, driven by the goal to

push the boundaries of synthetic image generation in academic research. By delving into

the architecture and capabilities of diffusion models, we not only enriched the dataset

for our thesis, but also contributed to a deeper understanding of how AI-driven image

synthesis can be used in various research fields.

Figure 4.1: Diffusion Model Architecture

4.1.1 Text Description

In a dedicated subsection of our thesis, we delve into the reverse engineering process

of utilizing large language models to describe synthetic images in textual form. This
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investigative approach was predicated on our strategic decision to employ diffusion models

for the generation of synthetic scene images within our research. Understanding how

diffusion models interpret images as textual descriptions was imperative, as it directly

informs our methodology for synthesizing scene images that are coherent and contextually

relevant to our study’s objectives.

The rationale behind this reverse engineering effort stems from the necessity to bridge

the gap between the visual and textual representations of data. By inputting synthetic

images into a large language model and analyzing its textual descriptions, we aimed to

decipher the underlying patterns, themes, and characteristics that diffusion models prior-

itize when converting textual prompts into images. This process involved feeding a large

language model a series of synthetic images generated by us and meticulously document-

ing how it articulated these images in text, identifying key descriptors, attributes, and

nuances it associated with each image.

This reverse engineering task was crucial for several reasons. Firstly, it provided us

with valuable insights into the interpretative mechanisms of diffusion models, allowing us

to tailor our textual prompts more effectively to generate desired images. Secondly, by

understanding the textual language that large language models use to describe images,

we were able to refine our approach to synthetic image generation, ensuring that the

resulting images align closely with the intended themes and elements of our research.

Ultimately, this subsection emphasizes the interdisciplinary nature of our research,

bridging AI’s capabilities in understanding and generating both textual and visual con-

tent. By reverse engineering the process of describing synthetic images using large lan-

guage models, we gained a deeper comprehension of the conversational models’ percep-

tual frameworks, which, in turn, significantly enhanced the precision and relevancy of

the synthetic scenes generated using diffusion models for our study. This methodology

underscores the iterative and explorative nature of working with AI tools in research,

where understanding the input-output dynamics of one tool (large language models) can

profoundly influence the effective utilization of another (diffusion models).
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4.1.2 Deciphering Diffusion Models: A Test of Image Under-

standing

In this chapter, we delve into the intricate workings of diffusion models’ image perception

and descriptive capabilities, unveiling the nuances of how this advanced AI interprets

visual data. Diffusion models, renowned for their ability to generate images from textual

descriptions, also possess the intriguing capability to ”see” and describe images with a

level of nuance that approaches human-like understanding. To explore this, we present

two real-life scenarios that demonstrate the interpretative skills of diffusion models. The

first scenario involves an image of a bustling urban street scene, replete with the vibrancy

of city life—a test of the diffusion model’s ability to identify and articulate the complexity

of everyday urban existence. The second scenario is a contrasting image of serenity: a

lone oak tree in a sun-drenched meadow, which probes the diffusion model’s capacity

to capture and convey the tranquil essence of nature. These scenarios were carefully

selected not only to test the range of the diffusion model’s image comprehension but also

to assess its proficiency in switching contexts and encapsulating varied thematic elements

within its descriptions. This analysis not only provides insight into the current state

of AI in image recognition and description but also propels us to consider the potential

applications and implications of such technology in our increasingly visual world.

4.1.2.1 Test-1

• Primary Scene: Intersection in a suburban area, potentially in Florida given the

greenery and light.

• Time: Daytime, as evidenced by the bright sky and shadows cast on the road.

• Weather: Clear, with no signs of precipitation or overcast conditions.

• Foreground:

– Interior of a vehicle, likely captured through a dashboard camera.

– Dashboard is partially visible at the bottom of the frame.
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Figure 4.2: Diffusion Model Understanding Test-1

– Windshield provides a clear view to the outside scene.

• Midground: Street View

– Road: Paved, with traffic lanes and road markings clearly visible.

– Vehicles:

∗ Police Car: Positioned on the road, bearing typical blue and white police

color scheme and markings.

– Surroundings: Suburban, with manicured grass and traffic infrastructure.

• Background: Suburban Environment

– Vegetation: Mature trees lining the street.

– Sky: Daylight with some clouds, but predominantly clear.

• Relationships:

– The viewer (through the camera’s perspective) is stationary behind the police

car.

– The police car is ahead on the road, positioned across traffic lanes, possibly

indicating an active response to an incident or an emergency situation.
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– The roadside vegetation and traffic lights provide a context of a regulated

traffic environment within a suburban setting.

4.1.2.2 Test-2

Figure 4.3: Diffusion Model Understanding Test-2

• Primary Scene: Rural or semi-rural road, likely in a region similar to Florida

given the dense vegetation and Spanish moss.

• Time: Daytime, as indicated by the natural light and shadows visible on the road.

• Weather: Overcast or partly cloudy, with diffused lighting and no direct sunlight

observed.

• Foreground: Inside of a vehicle, possibly a car.

– The dashboard is in clear view, occupying the lower portion of the image.

– The windshield serves as a transparent barrier, offering an unobstructed view

of the exterior.

• Midground: Roadway
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– The road is paved and appears to be a two-lane rural road with double yellow

lines, indicating no passing.

– Vehicles:

∗ Police Car: Parked or moving slowly on the right side of the road, fea-

turing the standard black and white color scheme with identifiable police

markings.

– Surroundings: Lush, with a natural and less manicured look compared to

urban areas.

• Background: Rural Landscape

– Vegetation: Dense greenery, trees draped with Spanish moss, and wild under-

brush.

– Sky: Visible through the canopy, appears mostly cloudy with soft light filtering

through.

• Relationships:

– The perspective is from inside a following car, capturing the scene through the

windshield.

– The positioning of the police car suggests it may have pulled over or is attend-

ing to a matter off the road.

– The surrounding foliage and road setup provide a sense of seclusion, typical of

less populated areas.

4.1.3 Results

Through a detailed analysis of the results from our proprietary dataset, we’ve been able

to identify with considerable precision the types of emergency vehicles involved, the traffic

conditions, the weather status, and the time of day. These insights have helped us define

key inputs for our language model, which is set to accurately interpret and contextualize

a variety of scenarios encountered on the road.

55



In the current stage of our research, we’ve chosen to exclude road type information

from the model’s inputs. This decision is based on our analysis, which shows that most

911 emergency calls are made near urban centers. As a result, the likelihood of calls

from rural areas is relatively low. Additionally, given the typical challenges faced by

autonomous vehicles in city settings, we’ve decided that our model’s distribution of road

types should follow a normal distribution for now.

This strategic choice allows us to streamline the model’s focus, reducing complexity

without compromising its ability to predict accurately. By incorporating emergency vehi-

cle types, traffic and weather conditions, along with time-of-day variables, we’re equipping

the model to perform with improved relevance and precision in the complex environment

of urban transportation.

It’s important to note that this decision isn’t set in stone but reflects our iterative

research process. As autonomous vehicles become more capable of handling a broader

range of terrains, and as our dataset expands to include more varied scenarios, we may

adjust the model’s parameters to encompass a wider array of road types.

In summary, our current approach to defining the language model’s inputs reflects a

careful balance between empirical evidence and practical considerations, designed to drive

our research forward in a way that is methodologically sound and in line with real-world

applications.
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Chapter 5

Language Models for Text

Generation

In the realm of text generation, the efficacy of a model is predominantly dictated by the

richness and diversity of its training dataset. Given the limited scope of input data ini-

tially available for my large language model, manual augmentation of input-output pairs

was deemed inefficient and time-consuming. To circumvent this constraint and enrich

the training dataset, the Anyway Conditional Tabular Generative Adversarial Network

(ACTGAN) was employed. The Gretel ACTGAN model API was leveraged to access a

generative data model specifically designed for tabular data. This innovative approach

supports advanced functionalities, including conditional data generation, proving par-

ticularly adept at handling datasets characterized by a predominance of numeric data,

extensive column counts, and highly unique categorical fields.

ACTGAN’s utility in enhancing the training dataset for large language models can-

not be overstated. However, it is imperative to acknowledge that this model is trained

exclusively on the examples provided in the training dataset. Consequently, it inherently

captures and is likely to perpetuate any biases present within the training set. To miti-

gate this, and ensure the augmented dataset’s suitability for the large language model, a

meticulous manual review and re-labeling process was undertaken. This step was critical

to refining the dataset, ensuring the generated text is not only diverse and rich but also
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devoid of inherent biases that could compromise the model’s objectivity and fairness.

By integrating ACTGAN’s capabilities with the large language model, this study has

significantly advanced the frontier in text generation. The augmented dataset has not

only expanded the model’s exposure to varied linguistic structures and semantics but

has also enhanced its ability to generate coherent and contextually relevant text. This

synthesis of generative adversarial networks with large language models presents a novel

methodology in the field of natural language processing, demonstrating the potential for

hybrid approaches to overcome limitations inherent in traditional model training pro-

cesses.

The generation of synthetic data was thus a strategic move, designed to bridge any

gaps in the dataset that could potentially hinder the model’s performance. By augmenting

the dataset with synthetic entries, we aimed to create a comprehensive training environ-

ment that would enable large language models to capture the nuances and varied nature

of emergency calls, ultimately leading to more accurate and reliable text generation that

reflects the critical information conveyed during 911 emergencies.

Here is an example:

Input

• Night

• Rain, moderate rain

• Ambulance, Police Car

• Normal Traffic

Output

• Primary Scene: An urban street during a rainy night in a simulated environment,

hinting at a driving or emergency response simulation.

• Time: Night within the simulation, as indicated by the simulated darkness and

the artificial lights reflecting on wet surfaces.

• Weather: Simulated moderate rainfall, with effects such as glistening roads and
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raindrops visible in the streetlights’ glow.

• Interior: The interior of a simulated emergency vehicle, likely an ambulance or

police car, with a focus on the view through the windshield, providing a first-person

perspective of the rainy street ahead.

• Road: The road is wet and reflective, with traffic lanes visibly marked and puddles

forming at the pedestrian crossings.

• Vehicles: Various simulated cars, including an ambulance and a police car, are

depicted with their emergency lights on, navigating through the normal traffic that

is moving cautiously due to the rain.

• Buildings: The buildings that line the street are typical urban structures, their

windows shimmering with the reflection of rain and street lights.

• Sky: The sky is dark, filled with rain clouds, enhancing the nocturnal urban at-

mosphere of the simulation.

• Relationships: The arrangement of the vehicles and the simulation’s weather con-

ditions create a dynamic scene where the emergency services are actively responding

within a typical traffic pattern, providing a realistic depiction of urban operations

during inclement weather.

5.1 Models for Improving Dataset

5.1.1 ACTGAN

The network structure of the CTGAN (Xu et al., 2019) model is designed to capture all

possible correlations between columns in tabular data. It utilizes fully-connected networks

in both the generator and critic components. The structure of the CTGAN network

is meticulously crafted to encapsulate the potential correlations among the columns of

tabular data. The model employs fully-connected layers in both the generator and critic

to ensure comprehensive feature integration.

The generator within CTGAN is composed of dual fully-connected hidden layers that

utilize batch normalization and ReLU activation functions to foster the generation of
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synthetic row representations. This synthesis is facilitated through a diverse set of acti-

vation functions: tanh for scalar values, and gumbel softmax for both mode indicators

and discrete values.

The critic, pivotal in assessing the fidelity of the synthetic data, incorporates the

leaky ReLU function and implements dropout across its hidden layers to enhance model

robustness. Furthermore, CTGAN adopts the PacGAN framework, specifically deploying

10 samples per pac to avert the issue of mode collapse.

The architecture underpinning the conditional generator and critic is delineated with

precision in the referenced document, explicating the intricate operations and transfor-

mations pivotal for synthetic data generation and the subsequent evaluation by the critic.

The discourse encompasses an array of innovative techniques such as mode-specific nor-

malization, conditional generator, and training-by-sampling—all integral in addressing

the complexities of tabular data synthesis.

The key components of the CTGAN model include:

Mode-Specific Normalization: Utilizing a variational Gaussian mixture model, CT-

GAN normalizes continuous columns, thus translating continuous values across varying

ranges into a bounded vector form, aptly suited for neural network processing.

Conditional Generator and Training-by-Sampling: To tackle the imbalance present in

discrete columns, CTGAN integrates a conditional generator and a training-by-sampling

methodology. The conditional generator is particularly advantageous for synthesizing

data corresponding to specific discrete values, an asset for data augmentation. Training-

by-sampling proves indispensable in managing datasets characterized by significant im-

balances, such as those found in credit-related data.

Network Architecture: The utilization of fully-connected networks within the genera-

tor and critic is key to capturing inter-column correlations. The generator benefits from

batch normalization and ReLU activations, whereas the critic is fortified by leaky ReLU

functions and dropout techniques.

Collectively, these components empower CTGAN to adeptly model complex column

distributions and produce synthetic tabular data that is both realistic and highly repre-
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sentative of the original datasets.

Given two discrete columns D1 and D2, the process begins by selecting a column, say

D2, and a category within that column, say category 1. Then, a row from the training

data Ttrain with D2 = 1 is picked.

A noise vector z is sampled from a multivariate normal distribution, z ∼ N (0, I), and

is fed to the generator G(·) along with the selected category encoded as a one-hot vector.

For example, if D2 is selected and category 1 is chosen, the one-hot vector would be [0, 1]

where the second position corresponds to category 1. This vector is concatenated with

z.

Figure 5.1: CTGAN Algorithm (Xu et al., 2019)

The generator G(·) then produces a synthetic row r̂ = {α̂1, β̂1, . . . , α̂2, β̂2, d̂1, d̂2},

which is a vector that mimics the real data’s structure. Here, α̂i represents the synthetic

continuous values and β̂i are the mode indicators for continuous columns, while d̂i are

the synthetic discrete values.

This synthetic row is then passed to the critic C(·), which evaluates the ’realness’ of

the generated data and produces a score reflecting how well the generator is performing.

The score is used to update the generator and critic during training, with the objective

of improving the generator’s ability to create realistic synthetic data.

The CTGAN model confronts the complexities of simulating tabular datasets with

a series of inventive solutions. Central to its design is the mode-specific normalization

technique, which adeptly manages the intricate distributions of continuous data, trans-
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forming continuous variables into a normalized vector format that neural networks can

process efficiently. Moreover, CTGAN incorporates a conditional generator combined

with a training-by-sampling strategy to tackle the prevalent issue of data imbalance, par-

ticularly within discrete columns. This approach is instrumental in generating synthetic

data for discrete values and maintaining equilibrium across disparate datasets. CTGAN

leverages fully-connected networks, along with contemporary training methods, to culti-

vate a model capable of accurately capturing and reproducing the intricate distributions

inherent in tabular data.

In my thesis, ACTGAN, an abbreviation for Anyway Conditional Tabular Generative

Adversarial Network, emerges as a sophisticated tool engineered to generate synthetic

data at scale, adept at processing the high-dimensional datasets characteristic of indus-

tries like advertising, cybersecurity, finance, and life sciences. As an evolution of CTGAN,

ACTGAN is designed to address and surmount scalability challenges presented by larger

datasets.

ACTGAN stands out with its several pivotal enhancements. It markedly diminishes

memory consumption on both CPU and GPU fronts, thus streamlining the training

workflow and facilitating the management of extensive datasets without resorting to high-

memory GPUs or enduring protracted training periods. This achievement stems from the

integration of a novel Binary Encoder that functions in concert with conventional one-hot

encoding, optimizing the internal data representation for efficiency.

Additionally, ACTGAN streamlines the identification and transformation of datetime

fields, adopting a novel sampling approach that reflects the actual distributions found

in the original data, rather than categorically treating such variables. This feature as-

sures that the synthetic data generated bears a closer resemblance to the original data’s

temporal trends.

A critical feature of ACTGAN is the enhancement of its conditional vector sampling

mechanism, significantly heightening the precision of conditional data generation. This is

particularly beneficial for creating accurately labeled instances within machine learning

datasets, thereby refining the utility and relevance of the synthetic data.
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5.1.2 Implementation

In our recent implementation, we employed the Gretel ACTGAN model, a variant of the

Generative Adversarial Network (GAN) framework specifically tailored for generating

synthetic tabular data that closely mimics authentic datasets. The ACTGAN model is

designed to operate with discrete and continuous variables, handling complex multi-modal

distributions and relationships within the data.

The configuration of the model was meticulously set to optimize its performance.

The embedding dim was established at 128 to allow for a robust representation of the

data. The generator dim and discriminator dim were both set to two layers of 1024

dimensions, providing the model with the necessary capacity to generate and discriminate

data effectively. The learning rates for the generator and discriminator were configured at

0.0001 and 0.00033, respectively, with a slight decay of 0.000001 to fine-tune the training

process over time. The batch size was set to auto, allowing the model to determine the

optimal number dynamically based on the dataset size.

5.1.3 Model Configuration Parameters

[Python code for Gretel ACTGAN model configuration]

1 embedding_dim: 128

2 generator_dim:

3 - 1024

4 - 1024

5 discriminator_dim:

6 - 1024

7 - 1024

8 generator_lr: 0.0001

9 generator_decay: 0.000001

10 discriminator_lr: 0.00033

11 discriminator_decay: 0.000001

12 batch_size: auto
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13 discriminator_steps: 1

14 binary_encoder_cutoff: 150

15 binary_encoder_nan_handler: mode

16 auto_transform_datetimes: false

17 log_frequency: true

18 cbn_sample_size: 250000

19 epochs: auto

20 pac: 10

21 data_upsample_limit: 100

22 conditional_vector_type: single_discrete

23 reconstruction_loss_coef: 1

24 force_conditioning: auto

Here are also the last modified model parameters.

1 - actgan:

2 privacy_filters:

3 outliers: medium

4 similarity: high

5 max_iterations: 10

6 params:

7 embedding_dim: 128

8 generator_dim:

9 - 512

10 - 512

11 discriminator_dim:

12 - 512

13 - 512

14 generator_lr: 0.0002

15 generator_decay: 0.00001

16 discriminator_lr: 0.0004
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17 discriminator_decay: 0.00001

18 batch_size: 64

19 discriminator_steps: 1

20 binary_encoder_cutoff: 150

21 binary_encoder_nan_handler: mode

22 auto_transform_datetimes: true

23 log_frequency: true

24 cbn_sample_size: 250000

25 epochs: 100

26 pac: 64

27 data_upsample_limit: 100

28 conditional_vector_type: single_discrete

29 conditional_select_column_prob: 0.5

30 conditional_select_mean_columns: null

31 reconstruction_loss_coef: 1

32 force_conditioning: true

33 generate:

34 num_records: 10000

35 max_invalid: 500

36 evaluate:

In the pursuit of optimizing the performance of the Anyway Conditional Tabular

Generative Adversarial Network (ACTGAN) utilized in this study, a series of strategic

adjustments were implemented to the model parameters. These modifications were in-

formed by preliminary results and aimed to enhance the generative capabilities of the

model, as well as to adapt to the specific characteristics of the dataset in use. Below, we

delineate the rationale behind each alteration:

Generator and Discriminator Dimensions: The dimensions for both the generator and

discriminator were escalated from 512 to 1024 units. This change aims to increase the

model’s capacity to capture and synthesize the complex patterns present in the data.
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A higher-dimensional space allows for a more nuanced representation of data features,

thereby improving the fidelity of the generated samples.

Learning Rates and Decay: Adjustments to the learning rates and decay parameters

were made to fine-tune the training dynamics. The generator’s learning rate was reduced

from 0.0002 to 0.0001, and the discriminator’s from 0.0004 to 0.00033, with both decays

adjusted to 0.000001. These changes are intended to facilitate more stable and gradual

learning, reducing the risk of overshooting minima in the optimization landscape. Batch

Size: The batch size was set to auto, allowing the training process to dynamically adjust

the number of samples processed simultaneously. This decision was based on the premise

that an adaptable batch size can optimize memory usage and computational efficiency,

potentially leading to improved model performance by adjusting to the optimal batch

size for the given computational environment.

Epochs and PAC (Perturbation of Actor-Critic): The number of epochs was set to

auto, and the PAC parameter was adjusted from 64 to 10. Allowing the model to

determine the optimal number of training epochs can lead to more efficient training cycles,

stopping the training process when additional epochs no longer contribute to significant

improvements. Reducing the PAC parameter aims to decrease the granularity at which

the discriminator evaluates batches, potentially leading to more robust discrimination

and generation by focusing on broader patterns rather than overfitting to specific sample

peculiarities.

Figure 5.2: First Model Training and Synthetic Data Correlation
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Figure 5.3: First Model Training and Synthetic Data PCA Results

Figure 5.4: Last Model Training and Synthetic Data Correlation
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The PCA visualizations serve as a tool to compare the dimensionality-reduced repre-

sentations of both the real training dataset and the synthetically generated dataset. For

the training data, the PCA plot shows a more focused distribution, indicating that the

real-world scenarios, as captured by the 911 call logs, possess a narrower range of vari-

ance. This is expected as the original data likely contains consistent and specific patterns

of emergency situations and their corresponding descriptive elements.

Figure 5.5: Last Model Training and Synthetic Data PCA Results

In contrast, the synthetic data plot reveals a broader spread across the principal

component axes. This dispersion suggests that the synthetic generator has successfully

introduced a wider variety of contextual elements and scenarios, which, while grounded in

the reality of the original data, extends beyond it to encapsulate a richer set of potential

emergencies and environmental conditions. The clusters within the synthetic data scatter

plot point to the formation of subgroups that could represent unique or less frequent

scenarios, adding to the robustness of the dataset. The PCA analysis validates that

the synthetic data is not an exact replica of the training data but rather an expansion,

aiming to enhance the language model’s ability to generalize across a spectrum of possible

emergency scenarios.
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5.1.4 Example of Result

Input

• daytime

• clear, sky is clear

• Ambulance, Police Car

• heavy traffic

Output

• Primary Scene: A daytime urban setting under a clear sky, depicted in a sim-

ulation environment, featuring an ambulance and a police car navigating through

heavy traffic conditions.

• Time: The scene is set during the day, with bright sunlight and a clear blue sky

creating a bustling atmosphere in the city.

• Weather: The weather is perfectly clear, providing optimal visibility and a sense

of warmth under the clear sky.

• Interior: View from inside a simulated emergency vehicle, focusing on the road and

the challenging heavy traffic conditions, illustrating the complexities of navigating

through congested streets under clear skies.

• Road: The road is congested with heavy traffic, characteristic of a busy daytime

period in the city, with vehicles moving slowly due to the congestion.

• Vehicles: Both an ambulance and a police car are part of the traffic, showcasing

their presence and the need for their services during busy times.

• Buildings: The urban buildings are bathed in sunlight, adding to the vibrancy of

the cityscape under the clear sky.

• Sky: The sky is clear and blue, emphasizing the brightness and warmth of the day.

• Relationships: This scenario captures the dynamics of emergency vehicles oper-

ating in heavy traffic during a clear day, highlighting the challenges and importance

of their roles in maintaining order during busy hours.
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5.2 Summary of Generating Synthetic Data for Lan-

guage Model

Figure 5.6: Field Distribution Comparisons

In the ”Field Distribution Comparisons” graph, we observe two sets of data repre-

sented by color-coded histograms: the original training data in purple and the syntheti-

cally generated data in blue. These datasets are analyzed in terms of their ’Input’ and

’Output’ distributions, providing insights into the data engineered to serve as the training

set for a GPT (Generative Pre-trained Transformer) language model.

The ’Input’ histogram reveals a multitude of input scenarios. The synthetic dataset,

shown in blue, exhibits a notably even distribution across a broad range of inputs, in

contrast to the more variable frequency distribution of the original training data in purple.

The consistency in the synthetic dataset’s distribution is intentional, aimed at providing a

comprehensive range of scenarios to prevent the model from overfitting to the less diverse

original data.

The ’Output’ histogram also displays the distribution of outcomes the GPT model is

expected to generate. Here again, the blue bars of the synthetic data present a smooth

and broad distribution, compared to the original data’s purple bars, which indicate a

narrower range of outputs. This broad coverage in the synthetic data is critical for the

GPT model’s ability to generalize across various outputs when generating text, ensuring
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that it learns from a dataset that mirrors the complexity and diversity of real-world data.

The strategic generation of the synthetic data, as highlighted by the blue bars, is thus

a deliberate effort to enhance the GPT model’s training process. By including a wide

array of synthesized scenarios, the model is encouraged to learn a more comprehensive

representation of possible situations. This training methodology ensures that the model

is not only trained on a rich dataset but also reflects a realistic variability that could be

encountered in practical applications.

The graph underscores the synthesis of a robust training set, where the synthetic

data (blue) is tailored to complement the original training data (purple), providing a

well-rounded foundation for the GPT model’s training. This preparation is instrumental

for developing a model that can accurately simulate human-like text generation across a

vast spectrum of topics and contexts.

In the process of enhancing the dataset for my analysis, I employed ACTGAN to

generate synthetic data, thereby significantly augmenting the size of my original dataset.

The expansion is reflected in a DataComPy comparison, which provides a detailed account

of the structural integrity and augmentation success. The original dataset consisted of a

modest 200 rows across two columns, which, through the application of synthetic data

generation techniques, was expanded to an impressive 9,453 rows, while maintaining the

original two columns. This careful expansion ensures that the dimensionality of the

dataset remains constant, preserving the features for consistent comparison and analysis.

The comparison was executed with a match on ’input’ and ’output’ columns, indicative of

the datasets’ relational attributes. Notably, the process introduced no duplicates in terms

of matched values, and the data was verified with an absolute tolerance of 0.0001, ensuring

high precision in the synthetic data. Despite the massive increase in data volume, there

was no commonality in rows between the original and new datasets, which underscores

the diversity and uniqueness of the generated records. Moreover, all compared columns

were found to be equal when accounting for the defined tolerance, demonstrating that

the values’ range and characteristics were faithfully reproduced in the synthetic set. This

extensive augmentation from the original 200 rows to 9,453 in the new dataset illustrates
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a successful data generation endeavor, which provides a rich and varied foundation for

training more robust predictive models, facilitating a deeper and more comprehensive

analysis.

5.3 Large Language Model for Scene Description

In the domain of computational linguistics and artificial intelligence, Large Language

Models (LLMs) represent a significant advancement in the ability of machines to pro-

cess, understand, and generate human language (Goodfellow et al., 2016). These models

leverage deep learning architectures, predominantly transformer models introduced by

Vaswani et al. (Vaswani et al., 2017b), designed to handle sequential data and capture

long-range dependencies within text. The ”large” in LLMs refers to the substantial scale

of the neural networks, which often contain billions or even trillions of parameters, en-

abling them to learn nuanced patterns of language from extensive corpora (Brown et al.,

2020).

The transformer model, central to the operation of Large Language Models leverages

a self-attention mechanism and positional encoding to process sequences of tokens. Below

are key mathematical formulations that define its operation:

The self-attention mechanism allows each position in a sequence to attend to all

positions within the same sequence, which is critical for understanding the contextual

relationship between words or subwords:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (5.1)

where Q, K, and V represent the matrices for queries, keys, and values, respectively,

and dk is the dimensionality of the keys. This formulation helps stabilize the gradients

by scaling the dot products.

To imbue the model with a sense of word order, or the position of tokens in a sequence,

positional encodings are added to the input embeddings:
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PE(pos,2i) = sin
( pos

100002i/dmodel

)
(5.2)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(5.3)

where pos is the position in the sequence, i is the dimension, and dmodel is the dimen-

sionality of the token embeddings.

. The training of these models involves a two-phase process: unsupervised pre-training

on a vast dataset to learn general language patterns, followed by fine-tuning on smaller,

task-specific datasets to optimize performance for particular tasks (Radford et al., 2019).

The training of LLMs involves minimizing the loss function, commonly the cross-entropy

loss, to predict the next word in a sequence:

L(θ) = −
∑
t

logP (wt|w<t; θ) (5.4)

where wt is the target word at time t, w<t denotes all preceding words, and θ represents

the model parameters.

LLMs like GPT undergo pre-training on a vast corpus of text to learn general language

patterns and are then fine-tuned on task-specific datasets:

• Pre-training: Learning from large, unlabeled text corpora.

• Fine-tuning: Adjusting model parameters θ on labeled datasets for specific tasks.

5.3.1 Implementation

In our effort to build a robust large language model despite limited authentic training

data, we turned to synthetic data as a solution. To generate the synthetic datasets,

we utilized Generative Adversarial Networks (ACTGANs). These datasets became an

additional training resource to offset the shortage of real-world data.

Once the synthetic data was created, we merged these sequences and distributions

with our original dataset, forming a comprehensive base for the large language model’s
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training phase. This approach not only increased the volume of our training data but also

added a diverse range of synthetic examples that closely resembled real-world scenarios.

With the large language model equipped with this enriched dataset, we moved on to

the deployment phase. At this stage, the model was tested against the entire set of actual

data, incorporating every genuine instance. The success of this endeavor was evident

in the large language model’s consistent ability to generate coherent and contextually

relevant text in response to new, unseen synthetic visual stimuli.

This achievement highlights two key outcomes. First, it demonstrates the large lan-

guage model’s skill in navigating and understanding synthetic data landscapes that closely

mimic real-world conditions. Second, it confirms the effectiveness of synthetic data in

supplementing real data shortages, offering a practical approach to data augmentation

without compromising the quality of the learned representations.

In summary, our exploration into the use of synthetic data for large language model

training has shown its considerable value. By tapping into the power of synthetic data,

we’ve unlocked the large language model’s potential to generate accurate textual inter-

pretations for a continuous flow of synthetic imagery, effectively bridging the gap between

limited data resources and the demand for extensive, high-quality training material.

1 training_configuration = {

2 ’batch_size ’: 4,

3 ’epochs ’: 3.0,

4 ’weight_decay ’: 0.01,

5 ’warmup_steps ’: 100,

6 ’lr_scheduler ’: ’linear ’,

7 ’learning_rate ’: 0.0002 ,

8 ’max_tokens ’: 512,

9 }

10

11 generation_configuration = {

12 ’num_records ’: 5000,

13 ’maximum_text_length ’: 3200,
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14 }

1 def create_finetune_dataset(dataset_path: str) -> pd.DataFrame:

2

3 records = []

4

5 try:

6 df = pd.read_csv(dataset_path , on_bad_lines=’skip’)

7 df[LABEL_AND_TEXT_COLUMN] = df[LABEL_COLUMN] + SEPARATOR

+ df[TEXT_COLUMN]

8 return df

9 except FileNotFoundError:

10 print(f"Error: File not found at ’{dataset_path}’")

11 return None

12

13 LABEL_AND_TEXT_COLUMN = ’label_and_text ’

14 SEPARATOR = ’:’

15

16 df = create_finetune_dataset(DATASET_PATH)

Listing 5.1: Python function to create a fine-tuning dataset.

1

2 def generate_synthetic_data(model: Model , prompt_df: pd.DataFrame

):

3 """

4 Generate synthetic data based on a prompt using an AI model.

5

6 Args:

7 model: The LLM used for generating synthetic data.

8 prompt_df: A single -column dataframe containing the
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prompts.

9

10 Returns:

11 df: A dataframe containing the synthetic data generated

by the model.

12 """

13

14 # Create a response handler object

15 response_handler = model.create_record_handler_obj(

16 params ={"maximum_text_length": 1800, "temperature": 0.7},

17 data_source=prompt_df

18 )

19 response_handler.submit_cloud ()

20 poll(response_handler , verbose=False)

21

22 # Read the response into a dataframe

23 df = pd.read_csv(response_handler.get_artifact_link("data"),

compression=’gzip’)

24

25 return df

26

27 synthetic_data = generate_synthetic_data(model , prompt_df)

28 synthetic_data

Function Overview The function create finetune dataset takes the path to a

dataset file in CSV format as its input and returns a pandas DataFrame. This DataFrame

includes a new column named label and text which concatenates the class label and

the associated text for each record, using a predefined separator.
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Error Handling Within the function, error handling is in place to manage instances

where the file is not found at the specified path, thereby ensuring that the function call

does not result in a termination of the program but rather a graceful exit with an error

message.

Usage The snippet ends with an example usage of the function, which would be tailored

to the specific path of the dataset intended for use.

Figure 5.7: Example of Training Dataset

5.3.1.1 Example of Result

Input Description Evening, Clear, sky is clear, Fire Truck, Heavy Traffic.

Output Description

• Primary Scene: An evening urban setting with clear skies, depicted in a simula-

tion environment, featuring a fire truck navigating through heavy traffic conditions.

• Time: The scene is set during the evening, with clear skies and abundant stars,

creating a serene and pleasant atmosphere over the city streets.

• Weather: The weather is clear with no signs of clouds or rain, making it an ideal

and visually appealing driving environment.
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• Interior: View from within a simulated fire truck, focusing on the road and the

surrounding heavy traffic, illustrating an intense evening in the city.

• Road: The road shows heavy traffic, with vehicles moving slowly in the congested

streets, reflecting an intense urban environment.

• Vehicles: A fire truck navigates through the city’s heavy traffic, highlighting its

role in responding to emergencies during busy evenings.

• Buildings: The city buildings stand tall under the clear skies, creating a visually

engaging urban landscape during the evening.

• Sky: The clear sky adds to the overall sense of tranquility and beauty in the scene,

with the city enjoying a pleasant evening.

• Relationships: This scenario captures the intense and visually appealing mood of

an evening in the city under clear skies, with a fire truck responding to emergencies

in heavy traffic conditions.

5.3.2 Model Accuracy

The Text Semantic Similarity Score, which ranges from 0 to 100, indicates how closely

the meanings of real and synthetic texts align across the entire dataset. To understand

this score, let’s break down how it’s calculated in our model:

Firstly, we use an embedding model to convert the text into a simpler, one-dimensional

representation, with each text transformed into a vector of length 512. Then, we compute

the cosine similarity between the average vectors of the training and synthetic texts. This

similarity measurement tells us how similar the meanings of the texts are. For example,

a score of 94 indicates that the synthetic texts generated by our model closely match the

meaning of the original texts. In simpler terms, it means that the synthetic texts are

almost indistinguishable from the real ones in terms of their meaning and context.

Moving on to the Text Structure Similarity Score, this metric assesses how closely the

structure of synthetic texts resembles that of the original dataset. It focuses on aspects

78



like sentence length, average words per sentence, and characters per word distributions.

But how do we determine this score?

We use something called Jensen-Shannon divergence, which is a statistical method

that measures the difference between two probability distributions. In our case, it helps

us compare the distribution of structural elements (like sentence length and word counts)

between the real and synthetic texts. A score of 88 suggests that the synthetic data

closely mirrors the original in terms of its structural makeup. This means that our

synthetic texts maintain similar patterns in sentence length, word usage, and overall

text structure compared to the real dataset. Essentially, it shows that our model has

successfully captured the nuances of how text is constructed in the original dataset.

Following the training phase, the large language model underwent a rigorous validation

process. A subset of 100 examples was selected from the validation dataset, which had

not been seen by the model during training. The large language model then generated

100 textual outputs corresponding to these unseen examples. To evaluate the quality of

the generated text, BERTScore, a metric for assessing the semantic similarity between

two pieces of text, was employed.

Figure 5.8: BERT Score Explanation (Zhang et al., 2019)

BERTScore is an automatic evaluation metric for text generation that computes a

similarity score for each token in the candidate sentence with each token in the reference

sentence using contextual embeddings.(Zhang et al., 2019)

It is utilized for evaluating generated text against gold standard references, applicable

in domains such as machine translation and caption generation tasks. The computation
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of BERTScore involves summing the cosine similarities between the tokens’ embeddings

of two sentences. This metric circumvents the limitations of n-gram-based approaches by

leveraging contextualized token embeddings, thereby enhancing the evaluation of seman-

tic equivalence.

Recall (R), Precision (P), and F1 Score (F1) Calculation:

• Recall (R): The average of the maximum dot product between each word in the

reference sentence x and the candidate sentence x̂.

• Precision (P): The average of the maximum dot product between each word in

the candidate sentence x̂ and the reference sentence x.

• F1 Score (F1): Computed using the harmonic mean of Precision and Recall:

F1 =
2 · P ·R
P +R

These scores collectively provide a nuanced evaluation of the similarity between reference

and candidate sentences through the use of BERTScore.

The evaluation of the generated text using BERTScore yielded the following average

scores across the dataset:

• Average Precision (P): 0.8342

• Average Recall (R): 0.8314

• Average F1 Score (F1): 0.8327

These scores represent the model’s ability to generate text that aligns with the ex-

pected output. Precision reflects the proportion of relevant instances among the instances

selected by the model. Recall indicates the proportion of relevant instances that were

retrieved over the total amount of relevant instances. The F1 Score is the harmonic

mean of precision and recall, providing a single score that balances the two metrics. The

BERTScore outcomes demonstrate the model’s high proficiency in generating semanti-

cally rich and contextually accurate descriptions of emergency scenarios across varied
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environments. These metrics indicate not only the model’s ability to replicate specific

details and contexts accurately but also its success in maintaining the integrity of the

emergency scenarios’ complex and dynamic nature. The high Precision score reflects

the generated text’s relevance and alignment with the diverse scenarios depicted in the

reference dataset, while the Recall score confirms that the model effectively encapsu-

lates the critical elements of these scenarios. The balanced F1 score further affirms the

model’s adeptness at providing detailed, comprehensive narratives that closely mirror the

reference texts.

Figure 5.9: Principal Component Analysis Results
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This image shows a scatter plot matrix generated through Principal Component Anal-

ysis (PCA). PCA is a dimensionality reduction technique used to visualize and analyze

large datasets by projecting them onto a lower-dimensional space defined by principal

components (PCs). Here are some observations:

• Multiple Subplots: The matrix contains multiple scatter plots. Each subplot

compares two principal components, indicating how data points in the reduced-

dimension space are distributed.

• Histogram Diagonal: The diagonal plots are histograms showing the distribution

of data along individual principal components. These histograms help understand

the spread and variance for each component.

• Color Coding: The color coding distinguishes between two datasets: a training

dataset (in purple) and a synthetic dataset (in green). This distinction helps analyze

how well the synthetic data aligns with the training data.

• Similarity Between Datasets: In many plots, the scatter points and histogram

distributions for both datasets overlap significantly. This overlap suggests that the

synthetic dataset closely resembles the training dataset in the PCA-reduced space,

indicating successful replication of the training data’s characteristics.

• Variances of Principal Components: Below each subplot, there is a mention

of the variance explained by each principal component. The first component (PC1)

explains the most variance (0.21), with subsequent components explaining lesser

variance. This information indicates the proportion of the dataset’s total variance

captured by each principal component.

Overall, this scatter plot matrix suggests that the synthetic dataset aligns well with

the training dataset, showing similar patterns in the reduced-dimensionality space. This

alignment indicates that the synthetic data generation process has successfully replicated

the key features and distributions of the original training data.
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Chapter 6

Image Generation

In Chapter 4, the choice to use a diffusion model for image generation represented a

significant advancement in our research. The decision was driven by the diffusion model’s

innovative capability to construct images from textual descriptions, enabling a new form

of synthetic media creation.

Building on this foundation, we created a fine-tuned dataset to train a large language

model. The dataset was synthesized using Anyway Conditional Tabular Generative Ad-

versarial Networks (ACTGANs), chosen for their ability to produce high-fidelity synthetic

data that closely resembles the complexity of real-world distributions.

The primary goal of synthesizing this data was to enhance the existing training set,

especially when the original data was limited or lacked comprehensiveness. This approach

not only expanded the dataset but also ensured that the linguistic patterns and intricacies

that the large language model was to learn encompassed a wide range of variations. Such

diversity is crucial for training the model to generate text prompts rich in context and

varied in content.

Once developed, the large language model became central to a synthetic generation

process aimed at producing descriptive texts. These texts are specifically crafted to be

processed by a diffusion model, which creates images from textual descriptions. The

goal behind developing the large language model went beyond text generation; it also

involved creating precise and detailed descriptions that could guide the diffusion model
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in synthesizing images that are coherent and contextually relevant.

This interaction between text generation and image synthesis forms the core of an

end-to-end pipeline that starts with synthetic data generation by ACTGAN and ends

with synthetic images created by a diffusion model. The images generated by the diffu-

sion model are then evaluated to determine their quality and the extent to which they

accurately represent the textual descriptions generated by the large language model.

In conclusion, the development of the large language model represents a critical step

in a broader effort to generate synthetic images through a diffusion model. By leveraging

the unique capabilities of ACTGAN and the large language model, we have established a

comprehensive method for creating synthetic media. This innovative approach not only

enhances the generation of artificial imagery but also opens up new possibilities for its

application across various sectors of the digital media landscape.

6.0.1 Example of Generated Images

In this section, we demonstrate the input provided to the diffusion model and the output

it generated. The input was created using a large language model (LLM), showcasing the

versatility of LLM-generated prompts for guiding the diffusion process.

The following is a description of the input to the diffusion model:
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Table 6.1: Input to Diffusion Model 1

Category Description

Primary Scene Rural or semi-rural road, likely in a region similar to Florida given the dense

vegetation and Spanish moss.

Time Daytime, as indicated by the natural light and shadows visible on the road.

Weather Overcast or partly cloudy, with diffused lighting and no direct sunlight ob-

served.

Foreground Inside of a vehicle, possibly a car, with the dashboard in clear view, occupying

the lower portion of the image, and the windshield serving as a transparent

barrier, offering an unobstructed view of the exterior.

Midground Roadway, with a paved two-lane rural road, featuring double yellow lines in-

dicating no passing. A police car is parked or moving slowly on the right side

of the road, and the surroundings are lush with a natural, less manicured look

compared to urban areas.

Background Rural Landscape, featuring dense greenery, trees draped with Spanish moss,

wild underbrush, and a sky visible through the canopy, appearing mostly

cloudy with soft light filtering through.

Relationships The perspective is from inside a following car, capturing the scene through the

windshield. The positioning of the police car suggests it may have pulled over

or is attending to a matter off the road, and the surrounding foliage and road

setup provide a sense of seclusion, typical of less populated areas.
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Figure 6.1: (Output of Diffusion Model 1) Generated Image Example 1

Table 6.2: Input to Diffusion Model 2

Category Description

Primary Scene An evening urban setting with light rain, depicted in a simulation environment,

featuring both an ambulance and a police car navigating through heavy traffic

conditions.

Time The scene is set during the evening, with light rain creating wet and challenging

conditions over the city streets.

Weather The weather features light rain, making it a demanding and potentially haz-

ardous driving environment.

Interior View from within a simulated emergency vehicle, with the focus on the road

and the challenging driving conditions caused by the rain.

Road The road shows heavy traffic, with vehicles moving cautiously in the rain,

reflecting a challenging and intense urban environment.

Vehicles Both an ambulance and a police car navigate the city under the rain, empha-

sizing their roles in maintaining safety.

Buildings The city buildings stand tall under the rain, creating a dramatic and intense

urban landscape during the evening.

Sky The rain intensifies the atmosphere, with wet streets and reflections enhancing

the city’s mood.

Relationships This scenario captures the intense mood of an evening in the city with light

rain, with emergency vehicles dealing with heavy traffic.
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Figure 6.2: (Output of Diffusion Model 2)Generated Image Example 2

Table 6.3: Input to Diffusion Model 3

Category Description

Primary Scene A simulated urban street scene at night under a clear sky, designed for a driving

simulation or emergency response training.

Time The setting is nighttime, highlighted by the darkness and the visibility of stars

in the clear sky, along with artificial street lighting.

Weather Weather conditions are simulated as clear, with a star-filled sky providing a

serene backdrop to the urban environment.

Interior View from within a simulated emergency vehicle, focusing on the clear view

ahead through the windshield.

Road The road shows a normal traffic flow, reflective of a calm night in the city.

Vehicles An ambulance and a police car are present, blending in with the normal traffic,

indicating a routine patrol or standby.

Buildings Urban buildings flank the street, their lights twinkling under the clear night

sky.

Sky The sky is clearly simulated to represent a typical clear night.

Relationships The scenario illustrates a typical night in the city, with emergency vehicles as

part of the regular traffic.
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Figure 6.3: (Output of Diffusion Model 3)Generated Image Example 3

Table 6.4: Input to Diffusion Model 4

Category Description

Primary Scene An evening urban setting with clear skies, depicted in a simulation environ-

ment, featuring a fire truck navigating through heavy traffic conditions.

Time The scene is set during the evening, with clear skies and abundant stars, cre-

ating a serene and pleasant atmosphere over the city streets.

Weather The weather is clear with no signs of clouds or rain, making it an ideal and

visually appealing driving environment.

Interior View from within a simulated fire truck, with the focus on the road and the

surrounding heavy traffic, illustrating an intense evening in the city.

Road The road shows heavy traffic, with vehicles moving slowly in the congested

streets, reflecting an intense urban environment.

Vehicles A fire truck navigates through the city’s heavy traffic, highlighting its role in

responding to emergencies during busy evenings.

Buildings The city buildings stand tall under the clear skies, creating a visually engaging

urban landscape during the evening.

Sky The clear sky adds to the overall sense of tranquility and beauty in the scene,

with the city enjoying a pleasant evening.

Relationships This scenario captures the intense and visually appealing mood of an evening

in the city under clear skies, with a fire truck responding to emergencies in

heavy traffic conditions.
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Figure 6.4: (Output of Diffusion Model 4)Generated Image Example 4

The examples of generated images, as illustrated in the thesis, highlight certain chal-

lenges in artificial intelligence recognition capabilities. Notably, in Image 6.1, identifying

the presence of a police car poses a significant challenge for models such as YOLO (You

Only Look Once), primarily because it appears indistinguishable from a standard vehicle

at first glance. Similarly, the flashing lights of emergency vehicles, such as ambulances

and police cars, during night-time emergency situations, present an additional challenge.

Artificial intelligence models may confuse these emergency lights with standard traffic

lights, leading to decreased accuracy scores. This confusion underscores the necessity for

sophisticated recognition algorithms that can differentiate between various light sources,

a task that can benefit from advanced activation functions in neural networks to enhance

feature discrimination.

The inception of this research project was partly due to the insufficient quantity

of emergency vehicle images available for training purposes. By augmenting datasets

with labeled synthetic images that replicate emergency scenarios, the robustness of these

datasets can be significantly enhanced. The synthetic images generated for this project

were based on scenarios constructed from real-world data analysis of 911 call logs, ensuring

relevance and applicability to actual emergency situations.

Incorporating synthetic images into training datasets strengthens the model’s ability

to recognize and differentiate between complex features in real-world scenarios.
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Figure 6.5: Generated Image in YOLO Model

Consistent with the introductory discussion, the challenge of object detection and clas-

sification models in accurately recognizing emergency vehicles is a recognized constraint

within the field. This synthetic image underscores the issue: the fire truck, despite being

prominently placed and closer to the viewpoint than other vehicles, is assigned a lower

confidence score and erroneously classified as a ’car’. Such misclassification is particularly

troubling given the distinct and critical nature of emergency vehicles in traffic scenes.

To demonstrate the consistency of this limitation, an image generated through object

detection on a real-world scenario is compared with the synthetic image (Figure 1.1). The

confidence scores from both instances align, indicating that these models often struggle

with similar misclassification patterns when dealing with emergency vehicles.

The image further illustrates the limitations of current models, which can struggle

with complex visual cues presented in real-world scenarios, such as reflective wet surfaces,

varying light conditions, and unique vehicle designs. The fire truck, with its conspicu-

ous reflective patterns and distinctive structure, should ostensibly be more recognizable;

yet, the model’s inability to accurately identify it suggests a need for enriched training

protocols.

To remedy these deficiencies, an expansion of the training data is essential. This
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expansion must include a substantial volume of accurately labeled, synthetic images that

mirror the diverse conditions under which emergency vehicles operate. By synthesizing

images from a corpus of real-world data and incorporating them into the training set, the

models can be better equipped to recognize the array of features unique to emergency

response vehicles.

The incorporation of these synthetic images, with precise annotations, is poised to

enhance the model’s performance significantly. This methodological enhancement will

be vital in advancing object detection systems’ reliability, as detailed in the forthcoming

section on future works. There, strategies for data augmentation and model retraining will

be outlined, providing a roadmap for overcoming the current limitations and advancing

the state of the art in visual object recognition.

Figure 6.6: Generated Image Example 5

As shown in the image (Figure 6.6: Generated Image Example 5) , a police car is

positioned in a far-right lane, which would typically be restricted or not used for regular

traffic flow in a real-world setting. This positioning indicates a situation that would

generally be improbable in standard traffic environments, suggesting it might be part

of a training exercise, simulation, or designed to create more challenging conditions for

object detection models.

While this might not align with typical road rules, such an arrangement can be valu-
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Figure 6.7: Generated Image Example 6

able in several contexts:

• Challenging Scenarios for Object Detection Models: By placing the police

car in an unconventional lane, models are presented with a scenario that requires

higher-level inference to understand why a vehicle is in a seemingly incorrect posi-

tion. This deviation from the norm can help object detection algorithms learn to

manage more complex and unexpected situations.

• Simulation and Training Environments: Simulations often need to include

unusual situations to prepare emergency response personnel for a wide range of

events. By incorporating scenarios like this one, simulation developers can create

more realistic and diverse training environments that reflect potential edge cases or

emergency response conditions.

• Testing Model Robustness: Situations where vehicles are out of their expected

positions can serve as a test for model robustness. If a model can accurately identify

and classify a police car in such a setting, it suggests that the model might be capa-

ble of handling complex and unconventional arrangements in real-world scenarios.
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This scene can serve as a useful resource for enhancing object detection models and

creating more varied and challenging simulation environments. While it might seem

unconventional, these scenarios are vital for advancing the capabilities of both object

detection technology and emergency response training simulations.
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Chapter 7

Conclusion

In this thesis, a critical observation was made regarding the challenges faced by artificial

intelligence models, particularly in recognizing emergency vehicles within the generated

images. As illustrated in Image 6.1, distinguishing a police car becomes notably difficult

for AI models, such as those based on convolutional neural networks (CNNs) utilizing

common activation functions like ReLU or Sigmoid. This difficulty arises because, in

certain generated scenarios, the police car appears indistinguishable from a standard

vehicle, lacking the distinctive visual cues typically relied upon for identification.

Further complicating model accuracy, emergency vehicles such as ambulances and

police cars, when depicted during nighttime scenarios with activated emergency lights,

present a unique challenge. AI models may erroneously interpret these lights as traffic

signals due to their similar luminous characteristics. This confusion potentially leads

to a decrease in the accuracy of such models when tasked with identifying emergency

situations or distinguishing emergency vehicles from other traffic participants.

The genesis of this research project was, in part, the recognition of a paucity in the

variety and quantity of emergency vehicle images within existing datasets. This shortage

hampers the ability of AI models to learn the nuanced visual signatures of these vehicles,

particularly in diverse operational contexts such as nighttime or emergency conditions

where lighting plays a pivotal role.

By synthesizing and subsequently labeling a broader array of emergency vehicle im-
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ages, including those with challenging lighting conditions, and integrating these into

existing datasets, we can substantially enhance the robustness and accuracy of AI mod-

els. This approach not only addresses the immediate challenge of vehicle recognition in

synthetic images but also contributes to the broader field of computer vision by providing

richer datasets for training.

Incorporating activation functions that excel in handling nonlinearities and complex

patterns, such as Leaky ReLU or ELU, could further augment the model’s performance

in distinguishing nuanced visual cues. Activation functions play a crucial role in neural

networks by introducing nonlinear properties, enabling the network to learn complex

patterns such as the subtle differences between an emergency vehicle and a regular vehicle

under various lighting conditions.

In conclusion, the augmentation of datasets with a diverse range of labeled synthetic

images of emergency vehicles represents a significant step forward in improving the per-

ceptual accuracy of AI models. This endeavor not only aids in overcoming current limita-

tions but also sets a foundation for future research in enhancing the cognitive capabilities

of AI systems in recognizing and interpreting complex visual environments.

Figure 7.1: Thesis Diagram

In this thesis, the methodological approach for data analysis was paramount to under-

standing and extracting significant features from real-world 911 call data. The generation

of synthetic text prompts was instrumental in supporting the training data for a large

language model, given the text-to-image nature of the subsequent image generation with
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a diffusion model. It is highlighted that for data beyond Orange County or for new

datasets of Orange County 911 calls, there may not be a need to conduct additional Ex-

ploratory Data Analysis (EDA) or generate synthetic ACTGAN prompts. The structure

elucidated herein delineates a workflow where the initial step involves amalgamating the

911 call data with pertinent datasets and extracting crucial features. Subsequently, the

necessary large language model (LLM) and diffusion models convert real-world data into

synthetic image datasets.

The subsequent phases of utilizing the created synthetic image datasets may pivot

to various research directions. Although the inception of this project was driven by the

absence of adequate emergency vehicle imagery in datasets, impeding the identification

capabilities of object detection and classification models used in autonomous driving, it is

imperative to recognize the broader applications of these synthetic datasets. They hold

potential utility across diverse domains, underscoring the versatility and extendibility

of the generated synthetic image data beyond the initial scope of improving emergency

vehicle recognition in autonomous navigation systems.

This workflow affirms the innovative use of AI in addressing data gaps within critical

application fields and opens up avenues for leveraging synthetic imagery for multipurpose

applications, thereby contributing to the advancement of AI in practical scenarios.

7.1 Future Work

The research trajectory has embraced an exploratory and experimental methodology, with

the initial findings indicating promising benefits. The following avenues are proposed for

future investigation:

1. Large-Scale Real-Synthetic Dataset Compilation: The assembly of an exten-

sive dataset that melds real and synthetic imagery is imperative. This repository

will underpin the development of advanced object detection and classification mod-

els, enhancing the diversity and realism of training data.

2. Benchmarking with Real-World Data Models: It is essential to evaluate the
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performance of models trained on the hybrid dataset against those trained solely on

real-world data. Comparative analysis will elucidate the value added by synthetic

data in terms of model performance.

3. Integration into Simulation Testing: Synthetic images should be utilized as

test data within simulated environments. Such simulations will provide a controlled

testing platform, especially beneficial in data-constrained scenarios.

4. Iterative Development and Evaluation: Adopting a cyclic approach to model

development, encompassing training, testing, and refinement, with the continual

incorporation of new data, is recommended for progressive enhancement of model

accuracy.

5. Exploration of Cross-Domain Applicability: The potential applications of

synthetic data sets extend beyond the initial scope of autonomous vehicle systems.

Future research should investigate the applicability in other domains reliant on

precise object detection.

6. Assessment of AI Trustworthiness: Future studies should examine the impact

of synthetic data on the trustworthiness of AI systems, assessing how such data

affects model confidence and public perceptions of AI reliability.

7. Creation of More Challenging Scenarios: Developing complex and challeng-

ing scenarios for AI models is crucial. This approach involves incorporating edge

cases, unexpected situations, and high-complexity environments to test and im-

prove model robustness. By simulating these scenarios, models can better adapt to

real-world unpredictability.

8. Adaptive Connectivity in Simulations: To ensure AI models can interact ef-

fectively with other systems, future work should focus on adaptive connectivity

within simulations. This includes enabling AI models to communicate and adapt

in response to varying conditions and contexts, enhancing their ability to operate

in dynamic environments.
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These initiatives are anticipated to make substantial contributions to AI research,

notably in refining object detection capabilities and in broadening our understanding of

synthetic data integration within machine learning models.
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